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Abstract

A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating

aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates

are numerically calculated using direct differentiation of the respective discretized governing

equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes

equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are

calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained

compare well with those obtained using the finite difference approach and establish the

computational efficiency and accuracy of the semi-analytical procedures.

Multidisciplinary design optimization procedures have been developed for aerospace

applications namely, gas turbine blades and high speed wing-body configurations. In complex

applications, the coupled optimization problems are decomposed into sublevels using multilevel

decomposition techniques. In cases with multiple objective functions, formal multiobjective

formulation such as the Kreisselmeier-Steinhauser function approach and the modified global

criteria approach have been used. Nonlinear programming techniques for continuous design

variables and a hybrid optimization technqiue, based on a simulated annealing algorithm, for

discrete design variables have been used for solving the optimization problems.

The optimization procedure for gas turbine blades improves the aerodynamic and heat

transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is

performed using a panel code. The blade heat transfer analysis is performed using an in-house

developed finite element procedure. The optimization procedure yields blade shapes with

significantly improved velocity and temperature distributions.

The multidisciplinary design optimization procedures for high speed wing-body

configurations simultaneously improve the aerodynamic, the sonic boom and the structural

characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized

Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The

aircraft wing load carrying member is modeled as either an isotropic or a composite box beam.

The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed

using a finite element procedure. The developed optimization procedures yield significant

improvements in all the performance criteria and provide interesting design trade-offs. The semi-

analytical sensitivity analysis techniques offer significant computational savings and allow the use

of comprehensive analysis procedures within design optimization studies.



1. Introduction

Design of aerospace vehicles is associated with complex multidisciplinary couplings. The

design process inherently involves interactions between various disciplines of engineering such as

aerodynamics, structures, dynamics, aeroelasticity, heat transfer, controls and acoustics. Also, the

impact of the operation of aerospace vehicles on the environment is gaining attention and

importance at all stages of the design process. Examples of factors that have environmental impact

include the engine noise, sonic boom, emission effects etc. The final vehicle configuration has to

satisfy a number of design requirements associated with the various disciplines. Often, these

multidisciplinary requirements are conflicting in nature. Design requirements that enhance the

performance of the aerospace system in one discipline, may deteriorate its performance in other

disciplines. For example, in high speed aircraft, it is desirable to have slender wings and a slender

fuselage from aerodynamics point of view. From a structural view point, it is necessary to have a

sufficiently thick wing to carry the aerodynamic loading well within material limits. From a

payload point of view, the fuselage has to have a minimum volume to accomodate an economically

feasible amount of payload. These are examples of conflicting design requirements. Also, the

impact of individual design features on the overall system performance is often not apparent to the

designer. Therefore, the designer must be able to evaluate the various conflicting design

requirements and provide insight into the effect of each design feature on the overall performance

of the system. In a typical aircraft design procedure, these conflicting design requirements are

compromised through a trade-off study. With the advent of modern computer technology,

Multidisciplinary Design Optimization (MDO) techniques could be well suited for such design

trade-off studies.

1.1 Multidisciplinary Design Optimization (MDO)

Multidisciplinary design optimization involves the coupling of two or more disciplines,

associated with the design of a sytem, within a closed loop numerical optimization procedure. The

importance of multidisciplinary couplings in successful design optimization of aerospace systems

has been long recognized. Sobieszczanski and Loendorf [ 1] developed a MDO procedure for the

design of fuselage structures. Fulton et al. [2] performed design optimization of a complete aircraft

model that involved 700 design variables and 2500 constraints. Barthelemy et al. [3-5] developed

MDO procedures for supersonic transport aircraft which included structural, aerodynamic and

aeroelastic criteria. Celi and Friedmann [6] developed a MDO procedure that performed structural

optimization of rotor blades with constraints on their aeroelastic behavior. Chattopadhyay et al. [7-

12] and McCarthy et al. [ 13-14] have developed several MDO procedures that integrate structural,

aeroelastic and aerodynamic performance criteria for various rotary wing applications. In these
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researchefforts,optimizationis performedby addressingall thedesigncriteria in a single level.

Suchanoptimizationapproach,referredto asthe"individual disciplinefeasible"formulation [15-
16], can be inefficient and may restrict designvariable movementdue to conflicting design

requirements.

1.1.1 MDO Using Multilevel Decomposition

A highly integrated and large design optimization problem can be decomposed into a

number of smaller subproblems using a process referred to as multilevel decomposition. The

subproblems are optimized separately and a procedure, which accounts for the interdisciplinary

coupling, is devised so that at convergence, the resulting optimum is that of the original non-

decomposed problem. Decomposition also helps decrease the size of the optimization problem

because each subproblem uses only a subset of the original design parameters as design variables.

For some problems, the process that accounts for interdisciplinary coupling may be non-iterative.

Multilevel decomposition techniques with a non-iterative interdisciplinary coupling process are

called hierarchical decomposition techniques [ 16]. For highly coupled systems, the process that

establishes interdisciplinary coupling is iterative in nature. Multilevel decomposition techniques

with such iterative coupling processes fall under non-hierarchical decomposition techniques [ 16].

Multilevel decomposition techniques have been widely applied to problems in structural

optimization. Schmit et al. [17-18] developed a hierarchical procedure for truss and wing box

models that included local and global constraints. Hughes [19] developed similar ideas for naval

structures. Sobieszczanski [20] developed a linear decomposition method for a large class of

nonlinear design problems. The effectiveness of this method has been demonstrated on two- and

three-level structural framework design problems [21-23]. Using the same method, Wrenn and

Dovi [24] optimized a complex transport wing model with 1200 variables and 2500 nonlinear

constraints. The method has been adapted to penalty function optimization techniques [25] where

improved efficiency is demonstrated by limiting the optimization to a single minimization step for

each subproblem within each cycle. Kirsch [26] used a multilevel formulation for the simultaneous

analysis and optimization of reinforced concrete beams. An obstacle to the use of multilevel

methods is that they can be computationally expensive because of the cycling necessary to account

for the coupling between the subproblems. Barthelemy and Riley [27] developed an improved

approach that increases the computational efficiency of multilevel optimization by adopting

constraint approximation and temporary constraint deletion. Barthelemy [28] reviewed various

engineering applications of heuristic decomposition methods. Bloebaum and Hajela [29] have

applied these methods for the decomposition of non-hierarchical systems.



Attempts havealso beenmadeto usemultilevel decompositiontechniquesfor MDO

problems.RoganandKolb [30] showedhow atransportaircraftpreliminarydesignproblemcan
be treatedasa multilevel optimizationproblem. Adelmanet al. [31] have reported a two-level

procedure for performing integrated aerodynamic, dynamic and structural optimization of rotor

blades, based on the multilevel optimization strategy described in Ref. 20. Chattopadhyay et al.

[32] developed a three-level, non-hierarchical procedure for optimization of helicopter rotor blades

with the integration of aerodynamics, dynamics, aeroelastic stability and structures. The blade

aerodynamic performance was improved in level 1, the dynamic performance and the aeroelastic

stability roots of the blade were improved in level 2 and the blade structural weight was reduced in

level 3 subject to stress constraints. Chattopadhyay et al. [33] also developed a two-level

decomposition procedure for improved high-speed cruise and hovering performance of tiltrotor

aircraft. These non-hierarchical multilevel optimization procedures cycle through the various levels

until global convergence is achieved. The interdisciplinary coupling between the various levels is

established through optimal sensitivity parameters [34-37]. At a given level, the optimal sensitivity

parameters are the derivatives of the objective functions and design variables of the other levels

with respect to design variables of the current level.

1.1.2 Accuracy of MDO Procedures

The validity of the designs obtained using MDO procedures depends strongly upon the

accuracy of the analysis techniques used. The reliability and practical implementation of the design

trends obtained from MDO procedures are critically dependent on the accuracy of the analysis

techniques used within them. It is essential to integrate accurate, efficient and comprehensive

analysis techniques within the MDO procedures so that the optimum designs obtained are

dependable. Such detailed analysis techniques are computationally intensive and therefore, can be

prohibitive within a design optimization environment. For example, in high speed aircraft design,

it is essential to use a comprehensive aerodynamic analysis procedure to solve the complex flow

field around the aircraft. Although accurate detailed analyses of many complex flow fields are now

possible using efficient Computational Fluid Dynamics (CFD) solvers and powerful

supercomputers, viscous-compressible flow calculations around supersonic aircraft can require

several Central Processing Unit (CPU) hours per steady-state solution. Therefore, the use of such

comprehensive analysis procedures within MDO can be computationally expensive, especially if

gradient-based techniques are used. Gradient-based optimization techniques require the calculation

of the derivatives of the objective functions and constraints of the optimization procedure with

respect to the design variables during each optimization cycle. The calculation of these derivatives

is termed sensitivity analysis. In a typical multidisciplinary optimization process, most of the
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computationaleffort is spenttowardssensitivityanalysis. Thecomputationaltime requiredfor

performingsensitivityanalysisdirectlyincreaseswith (1) thecomplexityof theanalysisprocedures
usedand(2) thenumberof designvariablesinvolved. SinceaccurateMDO procedurestypically

usecomprehensiveanalysisproceduresanda largenumberof designvariables,it is importantto

developanduseefficientsensitivityanalysistechniques.

1.2 Design Sensitivity Analysis

Sensitivity analysis, in which the derivative of a system performance function (e.g., the

lift-to-drag ratio of an aircraft wing) with respect to design variables (e.g., wing root chord) is

calculated, is an essential component in gradient-based design optimization. A widely used

technique for performing sensitivity analysis is the method of finite differences. In this method,

the performance function, whose derivatives with respect to design variables are to be calculated, is

first evaluated at the given design point. Then, the design variables are perturbed, one at a time

and the function is evaluated at each one of these perturbed design points. The derivatives of the

performance function are then calculated by taking the differences between perturbed function

values and the original function value and dividing these differences by the corresponding

perturbations in the design variables. As a result, the use of this method requires several

applications of the appropriate analysis procedures. For example, if there are NDV design

variables, then the finite difference method requires the execution of the analysis procedures at least

(NDV+I) times. Thus the associated computational cost can be prohibitive when this method is

used in an optimization problem involving a large number of design variables and computationally

intensive analysis procedures (such as CFD codes for evaluating three-dimensional flow fields).

Therefore, it is necessary to develop alternative techniques to calculate design sensitivities, so that

complex analysis procedures may be more useful as practical design tools in multidisciplinary

design optimization environments.

1.2.1 Semi-Analytical Sensitivity Analysis

It has been recognized that analytical or semi-analytical techniques for sensitivity analysis

are preferable over the finite difference method due to their computational efficiency and accuracy

[38]. Two such techniques are the direct differentiation approach and the adjoint variable approach

[39-43]. These techniques have been widely used for sensitivity calculations in structural

optimization [39-43]. In the direct differentiation approach, the governing equations for the

response variables (e. g., flow variables in a CFD procedure) are differentiated with respect to the

design variables using chain rule. This yields a large linear system of equations for the sensitivities

of the system response variables. The derivatives of the system performance functions are readily
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calculatedfrom theseresponsesensitivities. In the adjoint variableapproach,adjoint variable
vectorsareobtainedasthe solutionto anadjointproblem. Theadjoint variablevectorsarethen

usedto calculatethesensitivitiesof thesystemperformancefunctions. It is importantto notethat

in theadjoint variableapproach,thedesignsensitivitiesof thesystemresponsevariablesarenot
calculated.The two semi-analyticaltechniquesareequivalentandyield identicalresultsfor the
sensitivities. Therehasbeena widespreadinterestin using thesetechniquesfor calculating

aerodynamicsensitivities. CarlsonandElbanna [44-47] have usedthe direct differentiation

techniqueon thediscretizedtransonicsmallperturbationandthefull potentialequationsto obtain

aerodynamicsensitivities. Baysalet al. [48-51]haveperformeddiscretesensitivity analysisby
directlydifferentiatingthethree-dimensionalEulerequations.Korivi et al. [52] andNewmanetal.

[53] havedevelopeda semi-analyticalsensitivity analysisprocedurefor the thin-layerNavier-

Stokesequationsusinganincrementalstrategy.In thisapproach,theaerodynamicsensitivitiesare
calculatedin anincrementalfashionsimilarto theflow solution.

Dependingonthetypeof governingequationsused,semi-analyticalsensitivityanalysiscan

alsobecategorizedeitherasadiscreteapproach[44-54]or a continuousapproach[55-59]. The

discreteapproachtakesanalyticalderivativesof thediscretizedgoverningequationswith respectto

designvariables.Thecontinuousapproach,on theotherhand, calculatesthederivativesdirectly,
basedon thecontinuousgoverningequations,byusingthegeneralizedcalculusof variations[55-

56]. In otherwords,thegoverningequationsaredifferentiatedprior to their discretization.The
sensitivitiesarethencalculatedusinganumericalalgorithmsimilarto theone used for obtaining the

response solution. Jameson et al. [57-59] have developed such continuous sensitivity approaches

using the adjoint variable method to calculate aerodynamic sensitivities.

Bischof et al. [60-62] have developed a technique called automatic differentiation for

calculating sensitivities. Automatic differentiation techniques are based on the fact that every

function, no matter how complicated, is executed as a sequence of elementary operations such as

additions, multiplications and elementary functions such as Sine and Cosine in a computer. By

applying the chain rule repeatedly to the composition of these elementary operations and functions,

the derivatives of any complex function can be calculated exactly, even though this might be a

computationally intensive process.

1.2.2 Grid Sensitivity Analysis

Two main components of an aerodynamic sensitivity analysis procedure are: (1) the

calculation of the sensitivities of the flow variables and (2) the calculation of the sensitivities of the

computational grid with respect to the aerodynamic design variables. The sensitivities of the flow

variables are dependent upon the sensitivities of the computational grid coordinates [44-54]. In
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most of the aforementionedwork, finite differencetechniqueswere usedto calculatethe grid

sensitivities.Very fewformal investigationshavebeenreportedon thedevelopmentof analytical

or semi-analyticaltechniquesfor computinggrid sensitivities.Advancedelliptic andhyperbolic

grid generationcodesareoftenusedfor generatinggridsfor evaluatingtheflow fields of aircraft

configurations[63-64]. Theuseof thefinitedifferencemethodfor calculatinggrid sensitivitiescan

be computationally prohibitive in suchcases. Taylor et al. [65-68] have developeda grid
sensitivityanalysisprocedurein whichtheJacobianmatrix of theentiregrid with respectto the

grid pointson theboundaryof thedomainiscalculated.Thesensitivitiesof thesurfacegrid points
arecalculatedusinganelasticmembraneanalogyto representthecomputationaldomainandthe

surfacegrid sensitivitiesarecalculatedfrom a structuralanalysiscodeusingthe finite element
method.Extensionof this techniqueto complexthree-dimensionalflow fieldscanbecomplicated

andtimeconsuming.Further,theuseof anadditionalstructuralanalysiscodeincreasescomputing

time. Sadrehaghighiet al. [69-70]proposedananalyticalapproachfor calculatinggrid sensitivities

in which algebraic grid generationis performedusing transfinite interpolation and surface

parameterizationin terms of designvariables. The transfinite interpolation equations are

analyticallydifferentiatedto obtainthegridsensitivities.Themostgeneralparameterizationof the
boundarieswould requirethespecificationof everygrid point ontheboundarywhich,however,is

impracticalfrom a computationalpoint of view. A quasi-analyticalparameterizationis usedin
Refs.69and70 thatallowsanaircraftcomponentto bespecifiedby arelativelysmallnumberof

parameters.However, thetechniquedoesnot offer a greatamountof generalitybecausemost
CFD codesusecomplexgrids which aregeneratedusingmethodsbasedon partial differential

equations. Therefore, there is a needfor developingefficient analytical or semi-analytical

techniques,for calculatingthegrid sensitivities,to beusedwithin aerodynamicsensitivityanalysis.

1.3 Practical Applications of MDO

The application of MDO to practical aerospace design problems is briefly discussed below.

The procedure integrates aerodynamics, structures and sonic boom in an effort to obtain an

optimum high speed aircraft configuration. In 1987, the US government identified the

development of long range, high speed transports as one of the three major goals in aeronautics

[71]. Since then, the National Aeronautics and Space Agency (NASA) and the aerospace industry

have conducted studies to determine the feasibility of developing an economically viable High

Speed Civil Transport (HSCT) and the required technology development [72-74]. These studies

have indicated that HSCT will have a potential market at the turn of the 21 st century provided the

vehicle is environmentally compatible and can compete economically with advanced long-range

subsonic transports. The HSCT concept used in the studies [75] is a baseline vehicle designed to



carry 305 passengerswith a rangeof 5000 nauticalmiles and a cruise Mach numberof 2.4.
Advancedtechnologiesthatarerequiredin themajordisciplineareasof aerodynamics,structures,

propulsionandflight decksystemsfor thedevelopmentof theHSCThavesincebeenidentified

[75]. NASA hasdevelopedthe High SpeedResearch(HSR) Programwhich addressesthese

requirements,primarily in thedisciplinesof aerodynamicsandstructures.In aerodynamics,oneof
thegoalsof theHSRProgramhasbeento achieveincreasedlift-to-dragratiosthroughouttheflight

regimewhich requiresimprovedwing designs.High speedwing designeffortsutilize state-of-
the-artCFD tools for flow analysis. Methodscurrently beingdevelopedfor supersonicwing

designcoupleoptimizationschemeswith CFD solvers(Full Potential,Euler,Thin Layer Navier
StokesandParabolizedNavier Stokes)[76-79]. Reductionsin airframeweight alsocontribute

towardsbetterperformance.Improvementsin theareasof airframestructuresandmaterialscan

leadto significantweightreductionsin thewing,fuselageandotherstructuralcomponents.These

improvementsmaybeachievedthroughthedevelopmentof new light weight high temperature
materials,innovativestructuralconcepts,low-costfabricationtechniquesandaeroelastictailoring.

Optimizationtechniquesareveryusefulin theseeffortsto developimproveddesigns.

Supersoniccivil transport aircraft of the presentday have unacceptablesonic boom

characteristicswhichpreventroutineflightsoverpopulationcenters.Thetermsonicboomrefers

to pressurevariationsawayfrom theambientpressure,at locationsawayfrom theaircraft(usually

atgroundlevel). To makesupersonictraveleconomicallyfeasiblefor commercialoperators,sonic
boom levels producedby future supersonictransportmust be low enough to avoid severe

restrictionsbeingplacedon their flight paths. Hencesonicboomprediction andminimization

becomesanintegralpartof thehighspeedaircraftdesignprocess.Sonicboomstudiesconducted

in thepast[80-87]indicatethatlow boomconfigurationstypicallyexhibitabluntnessin theaircraft
nose region. However, extreme nose bluntnessleads to degradation in the aerodynamic

performance which might affect the aircraft payload capacity. Such conflicting design

requirementsbetween the various disciplines demandthe use of formal multidisciplinary

optimizationtechniquesto studythedesigntrade-offsassociatedwith thedevelopmentof avehicle
suchastheHSCT.
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2. Objectives

The primary goal of the present work has been to develop an efficient semi-analytical

sensitivity analysis technique to be integrated within advanced CFD codes for aerospace

applications. The CFD solver and the sensitivity analysis technique can then be used within formal

multidisciplinary design optimization procedures to investigate interdisciplinary couplings and

design trade-offs associated with applications such as high speed aircraft design. The secondary

goal of the present work has been to develop multidisciplinary design optimization procedures for a

practical aerospace application namely, the minimization of sonic boom associated with high speed

wing-body configurations.

In the present work, an efficient semi-analytical aerodynamic sensitivity analysis has been

developed inside a CFD solver and used within the multidisciplinary design optimization of high

speed wing-body configurations. The parabolized Navier-Stokes (PNS) equations have been used

extensively to compute complex, steady, supersonic, viscous flow fields [88-89]. A CFD

procedure, UPS3D, that is based on a finite volume approach [90-91] has been used to solve the

PNS equations for supersonic flows past high speed configurations in the present work. The

semi-analytical aerodynamic sensitivity analysis procedure has been developed within the UPS3D

code using the discrete, direct differentiation approach. Here, the sensitivities of the flow variables

and the performance functions (e.g., drag and lift coefficients) are calculated by differentiating the

discretized governing equations [92-93]. The choice of the discrete approach has been due to the

fact that the finite volume algorithm of the PNS solver is readily amenable to such an approach.

The grid sensitivities, which are part of the semi-analytical aerodynamic sensitivity analysis, have

been efficiently calculated by differentiating the discretized, hyperbolic grid generation equations

[94-95] with respect to design variables. This results in a linear system of equations, which are

solved readily for the grid sensitivities. Aerodynamic design sensitivities have been calculated for

high speed configurations using the semi-analytical sensitivity analysis procedures. Representative

results have been compared with those obtained using the finite difference approach to establish the

computational accuracy and efficiency of the developed semi-analytical procedures.

To demonstrate the efficiency of the semi-analytical sensitivity analysis procedures within

an design optimization environment, a few MDO procedures have been developed for the

integrated aerodynamic, sonic boom and structural optimization of high speed configurations [92-

93, 96-101]. In these optimization procedures, the aerodynamic design sensitivities are calculated

using the semi-analytical sensitivity procedures. The optimization procedures use a two-level

decomposition, where necessary. Appropriate aerodynamic and structural models have been

developed for the wing-body configurations. Design variables from these models have been used

within the optimization procedures.
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3. Sensitivity Analysis

The calculation of the derivatives of all the objective functions and constraints with respect

to the design variables within an optimization procedure is referred to as sensitivity analysis. To

illustrate the different sensitivity analysis techniques, consider an aerodynamic performance

coefficient, Cj. In the following sections, symbols in bold letters represent vectors. In general,

the coefficient Cj explicitly depends on the vector of flow variables, Q, the vector of computational

grid coordinates, X and the vector of design variables, _. This can be represented mathematically

as follows.

Cj = Cj(Q(_), X(_), _) (1)

The vector of flow variables, Q, and the vector of grid coordinates, X, are also functions of the

vector of design variables, _. The derivative of Cj with respect to the ith design variable, _i, is of

interest here. As mentioned earlier, this derivative can be calculated using either the finite

difference method or the semi-analytical approach which are discussed in the following sections.

3.1 Finite Difference Sensitivity Analysis

In this approach, the coefficient Cj is evaluated at the current design point, • and at a

perturbed design point, • + A_i, where A_i is a vector whose elements, with the exception of the

ith element, are all equal to zero. The ith element of the AcI:_ivector is equal to A_i where AOi is a

small, user-specified perturbation to the ith design variable, _)i. Then, the derivative of Cj with

respect to _i is evaluated by,

dCj _ {Cj(Q(_+ A_i),X(@ + A_i),@+ A@i) - Cj(Q,X,_)} (2)

d_i _i

Thus, if there are NDV design variables in the vector _, then the coefficient Cj has to be evaluated

(NDV+I) times, in order to calculate its derivatives with respect to all the design variables using

the one-sided finite difference method. This means that the aerodynamic analysis needs to be

executed (NDV+I) times which can be computationally expensive if a CFD-based analysis

procedure (e.g., 3-D PNS solver) is used.

3.2 Discrete Semi-Analytical Aerodynamic Sensitivity Analysis

In this research, the sensitivities of the aerodynamic performance coefficients of the aircraft

with respect to the relevant geometric parameters (design variables) are calculated using the direct

differentiation approach which is described in detail below.

The derivative of Cj with respect to the ith design variable, Oi, can be obtained by using the

chain rule of differentiation on Eq. 1. This is expressed mathematically as,

10



(3)

Here, the terms , --_ and _i can be readily calculated since the explicit dependence of

the aerodynamic coefficient Cj on the vector of flow variables, Q, the vector of grid coordinates,

X, and the ith design variable _i are usually known. The term {_ii }, which rep resents the

sensitivities of the flow variables with respect to the ith design variable, cannot be calculated easily

because the dependence of Q on _i is implicit in nature. Similarly, the term { O_i }, which

represents the sensitivities of the computational grid coordinates with respect to the i th design

variable, cannot be calculated readily because of the implicit dependence of X on OOi. In this

research, these two terms are calculated using the direct differentiation approach. The calculation

of the sensitivities of the flow variables is discussed here and the calculation of the grid sensitivities

is discussed in the next section. In order to calculate {_i }, the discretized governing differential

equations for the flow variables need to be considered. The governing differential equations,

discretized over a computational domain, are expressed as follows.

{ R(Q(O),X(O),O) } = {0} (4)

Equation 4, when differentiated with respect to Oi, yields the following.

= __ + -- + ={o}
c)Q _i c)X _i _i

(5)

Equation 5 represents a set of linear algebraic equations in {_i } which need to be solved. It is to

be noted that the terms , and in Eq. 5, can be calculated easily, since the

explicit dependence of R on Q, X and _i is known from the numerical scheme used to obtain Eq.

4. It is also to be noted that the grid sensitivity vector, {-'_ii }, must be calculated bef°re Eq" 5 can

be solved for the flow variable sensitivities, { _i }.
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3.3 Grid Sensitivity Technique

The term {__i }, appearing in Eqs. 3 and 5, represents the grid sensitivity vector. One

way to calculate the grid sensitivity vector is to use the finite difference method, described in

Section 3.1, by perturbing each design variable individually and executing the grid generation

procedure (NDV+ 1) times. Over the past decade, grid generation techniques have advanced to a

very high level. Grid generation techniques, based on elliptic and hyperbolic differential

equations, are widely used in CFD instead of algebraic techniques due to their robustness [63].

With such advanced grid generation techniques, the finite difference method for calculating grid

sensitivities can be expensive. In this research, a direct differentiation approach has been

developed for calculating grid sensitivities. A hyperbolic grid generation scheme developed by

Steger et al. [102-104] has been used by the flow solver used in the present research. The

hyperbolic grid generation scheme in Ref. 104, formulated from grid orthogonality and cell volume

specification, can be used to generate three-dimensional grids for a wide variety of geometries.

Using this scheme, generalized computational coordinates _(x,y,z), rl(x,y,z) and _(x,y,z) are

sought where the body surface is chosen to coincide with _(x,y,z) - 0 and the surface distribution

of _ = constant and q = constant are user-specified. Here, the xyz coordinate system is a Cartesian

coordinate system representing the physical domain and _rl_ coordinate system is the

computational domain used by the CFD procedure for aerodynamic analysis [Fig. 1].

The grid generation equations are derived from orthogonality relations between _ and 4,

between 11and _ and a cell volume or a finite Jacobian J constraint [101]:

x_x_+y_y_+z_z_ =0
(6a)

xrlx_ +Y_lY_ +zrlz_ = 0
(6b)

Y

Figure 1. Coordinate systems.
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x{ (yrlz_- Y@rl)+ xrl(y_z_- y{z_)+ x_(y{zll - yrlZ{) = AV (6c)

or, with _ defined as (x,y,z) T

_{-_ =0 (7a)

_q._ =0 (7b)

O(x,y,z) =j-I =AV (7c)

In Eq. 6c, AV is a user-specified cell volume distribution. The cell volume at a given grid point is

set equal to the computed surface area element times a user specified arc length for marching in the

direction [ 104]. Equations 6 comprise a system of nonlinear partial differential equations which

can be solved for the grid coordinates, x, y and z, using a non-iterative implicit finite difference

scheme by marching in the _ direction, starting with the initial (x, y, z) data specified at _ = 0.

Linearization of Eqs. 6 is performed about the previous marching step in _ [104].

Let A_, = Arl = At = 1 such that _, = j- 1, 11 = k- 1 and _ = 1-1. Central differencing of Eqs.

6 in _ and rl with two-point backward implicit differencing in _ leads to the following difference

equations.

A18{(?I+ 1 -rl)+BlSrl(rl+l- rl) +Cl (rl+l -rl) = gl+l (8)

where

x_
A= 0

(ynz;-Y;Zn)

Y_
0

(x;z n -xnz ;)

0 0
B = x_ y_

(y@g-y@_) (x@_-x_zg)

x_
c

(y@q-yqz_)

Y_

Yn

(XnZ_-X_Z n)

7 (9a)

(xqy_ -x_yrl) )

° /z_ (9b)

(x_y{ -x{y_)

z, /zn (9c)

(x_Yn-xny_)
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(9d)

and _j_ _+1-_-1 _1.1_k = rk+l -rk-1 (9e)
2 ' 2

Here, only those indices that change are indicated, thus r1+1 implies rj,k,l+ 1 and rj+l implies rj+l,k, 1

etc. Multiplying through Eq. 8 by Ci -1 and approximately factoring gives

(I+ CIIBISrl)(I+Ci-IAlS_)(rl+l-rl) = ci-lgl+l (lO)

where I is the identity matrix. Equation 10 is a sequence of two block tridiagonal systems which

can be solved readily to obtain the grid coordinates vector, _1+1, which is part of the grid

coordinates vector, X.

The grid sensitivities { 0_ii }.are obtained bY directly differentiation Eq. 10 with respect t°

the ith design variable, 0i. To illustrate the semi-analytical grid sensitivity technique, Eq. 10 is

rewritten based on the approximate factorization algorithm as:

(I + Ci-lBl_in)tl+l = Cl-lgl+l (11)

where

(I +C1-1A18_)(_1+1 -_I)= tl+l (12)

Thus, the grid generation is performed in two steps. First, Eq. 11 is solved for tl+l, using a block

tridiagonal solver. The quantity, tl+l, is then used as the fight hand side of Eq. 12. Next, Eq. 12

is solved using a block tridiagonal solver to obtain the new grid coordinates vector, ?1+1. The grid

sensitivity calculations proceed in a similar two-step fashion. First, Eq. 11 is differentiated with

respect to g)i resulting in,

- d(ci-l_l+l) d(I+ci-lB18n)
(I+CIIBIS_) d_ 1 =. tl+ 1

d_i d_iuwi

(13)
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Equation 13 is solved for the derivatives, d_l+l Next, Eq. 12 is differentiated with respect to Oi
d_i

for {_t'which are part of the grid sensitivity vector.resulting in the following equation

(I+CIIAIS_) d(rl+l-rl) _ dt'l+l d(I+Cl-lAl_ )
de i d0 i de i (rl+l -rl) (14)

Equations 13 and 14 represent linear systems of equations for the grid sensitivities. It is

important to note that the coefficient matrices on the left hand side of Eqs. 11 and 13 are identical.

The coefficient matrices in Eqs. 12 and 14 are also identical. The block tridiagonal systems in Eqs.

11 and 12 are solved within the grid generation procedure using a L-U decomposition scheme

which is also used for solving Eqs. 13 and 14, after the appropriate right hand side vectors of Eqs.

13 and 14 are calculated for each design variable. The computational cost of calculating these right

hand side vectors is significantly lower than that of recomputing the L-U decompositions for NDV

design variables (as would be required by the finite difference approach during the execution of the

grid generation procedure an additional NDV times) resulting in significant CPU savings.

3.4 Adaptation of Sensitivity Analysis to Flow Solver

In this research, the semi-analytical aerodynamic sensitivity analysis technique described

above has been adapted to be used with the flow solver (PNS equations). The assumptions made

in deriving the PNS equations are outlined below [88-90]. The streamwise derivatives of the

viscous terms are neglected. This assumption is considered valid for high Reynolds number flows

[90]. The inviscid region of the flow field must be supersonic and the streamwise velocity

component must be positive everywhere. Thus streamwise flow separation is not allowed but

crossflow separation is allowed. Unlike the unsteady Navier-Stokes equations which require time

marching numerical schemes, the PNS equations are solved using space marching schemes

resulting in reductions in computational time and memory requirements. The PNS equations are

written in the computational domain (_rl_ system) as [90],

(15)

where

E =/_j_)Ei + (_j_)Fi +/_j_/Gi
(16a)
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_'= (Ei-Ev)+ (Fi-Fv)+ -j-- (Gi-G v)
(16b)

(16c)

The inviscid flux vectors (subscript i) and viscous flux vectors (subscript v) are defined by

Ei=[PUpu2+ppuv puw(Et+p)u]T

Fi=[PVpuvpv2+ppvw(Et+p)v]T

G,:[_wpuwpvwpw'+p (E_+p)w]_

(17)

E v =[0 l:xx "Cxy "_xz u'l:xx+V'l:xy +w'_xz-qx ]T

Fv=[0 _xy _yy _yz u'l:xy-I-V_yy-l-W'gyz-qy] T

Gv=[0 "_xz l:yz '_zz U'_xz+V'_yz+W'Czz-qz] T

(18)

(19)

The superscript "*" on the viscous flux vectors in Eqs. 16 indicates that derivatives with respect to

have been omitted. In these equations, p is the pressure, p is the density, u, v and w are the

velocity components in the x, y and z directions, respectively, e is the internal energy, x is the

viscous stress and q is the heat conduction rate. All physical quantities have been non-

dimensionalized appropriately [90]. The partial derivatives, _x, _y ..... _y, _z, are the metrics of

transformation between the _rl_ and the xyz system and J denotes the Jacobian of the

transformation. The flow solver is the UPS3D code [90] developed at NASA Ames Research

Center. The computational procedure used in this code integrates the PNS equations using an

implicit, approximately factored, finite-volume algorithm where the crossflow inviscid fluxes are

evaluated by Roe's flux-difference splitting scheme [91]. The UPS3D code also has the capability

of calculating the inviscid flow field, by solving the PNS equations without the viscous terms. In

the present research, this inviscid option has been used while evaluating the flow field. The

upwind algorithm is used to improve the resolution of the shock waves over that obtained with the

conventional central differencing schemes. The post-processor in the UPS3D solver evaluates the

non-dimensional force coefficients, such as lift coefficient (CL) and drag coefficient (CD), by
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integratingthepressuredistributionsover the surfaceof the body. Non-dimensionalizationof
theseforcecoefficientsisperformedusingauser-specifiedcharacteristicareaof theaircraft. The
numerical algorithm of the UPS3Dsolver calculatesthe flow solution by marching in the

direction.ThePNSequationsgivenbyEq. 15takeonthefollowingdiscreteform usingthefinite-

volumealgorithm.

1 1

(El ]n+l (Fi ^,.n+- ^,.n+- _
,k.I + -FV)k+_, 1 + ((_i -GV)k,121

I 1

--n -Gv) 2 1 0- k,I, -_

(20)

where the subscript k represents a grid point in the 11 direction, the subscript I denotes a grid point

in the _ direction, the superscript n denotes the grid point in the current _ location and the

superscript n+l denotes the next _ step in the space marching scheme. To avoid departure

behavior of the flow solutions associated with Eq. 20, it is necessary to suppress the ellipticity that

is caused by the pressure gradient in the streamwise momentum equation. This is accomplished by

( )n isa technique developed by Vigneron et al. [105] in which the streamwise flux vector, ]_i k,l'

separated into two parts as follows.

i_ n , n
(i)k,! = I_*(dS_,IUk,I)+I_P(dS_,I,U_I) (21)

This splitting of the streamwise flux vector is unique to PNS solvers. However, even when the

inviscid option is used, the UPS3D solver [90] applies this splitting in its numerical algorithm.

This is one of the distinguishing features of the UPS3D solver. The forms of 1_* and 1_p of Eq.

21 are given by

^

pU

^

(E t +p)U

EP

0

: o,p
0

(22)
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(23)

An eigenvalue analysis shows that Eq. 20 is hyperbolic-parabolic with respect to the new

dependent vector , provided that o_ satisfies the relation

(24)

where M_ is the Mach number in the _ direction and _ is a factor used to account for nonlinearities

^*( n n ) ,s evaluatednot otherwise included in the analysis. In Eq. 21, E dSk,l,Uk,! means that l_* "

from Eq. 22 using the values of the metrics and the flow variables corresponding to station n.

Similarly, the term I_p (dS_, I,U_A 1) in Eq. 21 indicates that 1_p is evaluated from Eq. 22 using the

values of the metrics corresponding to station n and the flow variables (including co) corresponding
^_

to station (n-l). To avoid the difficulty of extracting the flow properties from the flux vector E

and to simplify the application of the implicit algorithm, a change is made in the dependent variable

from 1_* to the vector of conserved variables, U, using the following linearization.

where

U = [13 pu pv pw Et] T (26)

and

^,n-1 _1_* (dSn, Un-1 )

Ak, 1 = _un_ 1
(27)

Using Roe's flux vector splitting for the crossflow fluxes, the Vigneron technique [105] for

suppressing departure solution and an implicit algorithm, Eq. 20 is approximately factored into two

block-tridiagonal systems to yield the following discrete governing equations for calculating the

flow field [88].
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^, _ ,-,]°

^ ! ^ jnAk, I + _Uk, 1

= RHS n

(28a)

where

RHS n = - Ak, 1 -Ak, I Uk,I -Srl Fi

^ p n+l n ^ p n n-I

(28b)

F I and G I are the first order cross flow fluxes in the rl and the _ direction, respectively. F II and

G II are the second order cross flow fluxes in the rl and the _ direction, respectively. The inviscid

option in the UPS3D solver ignores the viscous terms on both sides of Eq. 28a while solving for

the flow variables. The differencing operators in Eq. 28 are defined as follows.

m+- m---
2 2

_IJ 1 °_lIJ 1

m+_ 2 ¢I)m_l
_ * _ -- OUm+ 1 I:][)m+l _Um_ 1

(29)

Using the discrete semi-analytical aerodynamic sensitivity analysis approach, the

discretized governing flow equations, Eq. 28, are directly differentiated with respect to the ith

design variable, ¢i. This yields a system of algebraic equations for the flow sensitivities which can

be approximately factored into two block tridiagonal systems as follows.
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nA .,1+ onUk,l

],n

d¢i

k,l +

d

Ak, 1 +

()Uk,1

_ !iitI.F -F,, ^, ,,

ll> Ak, 1 X
+ 8n OU

d_i

_n+l U k,1

(30)

It is to be noted that the block tridiagonal coefficient matrices on the left hand sides of Eqs. 28 and

30 are identical. Hence, the L-U decompositions of the block tridiagonal matrices of Eq. 28 can

also be used for the calculation of the flow variable sensitivities from Eq. 30. Thus, it is only

required to calculate the appropriate fight hand side vectors of Eq. 30 for all the design variables, in

order to calculate the flow variable sensitivities. In the finite difference approach, the flow solution

needs to be solved an additional NDV times which implies that the L-U decompositions of the

coefficient matrices of Eq. 28 are performed an additional NDV times. This makes the direct

differentiation approach computationally very efficient over the finite difference approach. The

following section describes the application of these procedures for the aerodynamic design

sensitivity analysis of a high speed wing-body configuration.

3.5 Design Sensitivity Calculations for Wing-Body Configurations

The semi-analytical sensitivity techniques for grid sensitivity and aerodynamic sensitivity

calculations, described above, are used to calculate the design sensitivities for a high speed

configuration. Numerical results for a delta wing-body configuration (Fig. 2) are presented here.

In this configuration, the center body is axisymmetric and is a combination of a nose region and an

extended cylindrical region. The forebody of the vehicle has a sharp nose with the radius, r,

varying quadratically with the axial coordinate, x, over the nose length, ln. The radius of the
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cylindrical region is denoted rm. The variation of the body radius of the body changes from the tip

to its maximum value, rm, over the nose length, In, is given by

r = rm-rm 1- (31)

Here, x is the axial coordinate measured from the tip of the aircraft. The wing planform parameters

include: leading edge sweep, )_, root chord, Co, wing span, Ws and the wing starting location, xw,

measured from the nose of the aircraft. The wing cross section is a diamond airfoil with the

thickness-to-chord ratio, tc. The total length of the body is denoted lb. The values of these

parameters used in the present case are: co = 7.08 m, )_ = 66.0 degrees, w s = 3.53 m, tc = 0.052,

rm = 0.57 m, In = 6.01 m, Xw = 8.21 m and lb = 17.52 m. A three-dimensional hyperbolic grid,

with 75 grid points in the circumferential (1"1) direction and 80 grid points in the normal (4)

direction, is generated around the wing-body configuration for the flow analysis using the UPS3D

solver. The space marching scheme of the UPS3D solver uses a step size of 0.01 m. The

aerodynamic sensitivities are calculated for a cruise Mach number of 2.5 and an angle of attack of 5

degrees.

The grid sensitivities with respect to the leading edge sweep 0_), root chord (Co), wing

span (Ws) and thickness-to-chord ratio (tc) are presented in Table 1. Comparisons are made with

those obtained using the finite difference technique. The finite difference grid sensitivities are

calculated by perturbing each of the four variables by 0.1 percent. As shown, there is excellent

agreement between the results from the two techniques. The sensitivities at the first grid point are

zero because this point lies in the nose region of the aircraft and the four variables considered are

all wing design variables which do not affect the grid in the nose region.

Grid point

(x, y, z)
(0.300, 0.044,

O.O08)

(13.19,
-0.561, 0.104)

Table 1. Grid sensitivity of the three-dimensional hyperbolic grid.

Design variable

Sweep (_,)

Root chord (c o)

Wing span (w s)

Thickness/chord (t c)

Sweep 0Q

Root chord (c o)

Wing span (w s)
Thickness/chord (t c)

Finite difference grid

sensitivity method
(0.000, 0.000, 0.000)

(0.000, 0.000, 0.000)

(0.000, 0.000, 0.000)

(0.000, 0.000, 0.000)

(0.0, 0.0016, 0.0001)

(0.0,-0.0171,-0.0109)

(0.0,-0.0148,-0.0096)

(0.0,- 1.0693,-0.7514)

Direct differentiation

_rid sensitivity method
(0.000, 0.000, 0.000)

(0.000, 0.000, 0.000)

(0.000, 0.000, 0.000)

(0.000, 0.000, 0.000)
(0.0, 0.0016, 0.0001)

(0.0,-0.0170,-0.0108)

(0.0,-0.0149,-0.0097)

(0.0,- 1.0695,-0.7517)
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A comparisonof theCPUtime ona CRAY-2 [Fig.3] showsa40percentreductionachievedfor

one completegrid sensitivity analysisusingthe direct differentiation approachover the finite
differencemethod.Thisclearlydemonstratesthesignificantcomputationalsavingsachievableby

using the direct differentiation approach. This is particularly important in a formal design

optimizationprocedurewhereseveralsuchdesignsensitivityanalysesarenecessary.
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Figure 2. Delta wing-body configuration (schematic).
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Comparison of CPU time (seconds) for the sensitivity of hyperbolic grid.

Results obtained from the aerodynamic sensitivity analysis procedure are presented next.

The sensitivities of the inviscid drag coefficient (CD) and the lift coefficient (CL), calculated using

the direct differentiation technique as well as the finite difference approach, are presented in Tables

2 and 3 respectively. It must be noted that column 3 in Tables 2 and 3 presents the results of the

semi-analytical aerodynamic sensitivity approach with finite difference grid sensitivity while

column 4 presents the results of the semi-analytical aerodynamic sensitivity approach with semi-

analytical grid sensitivity. As shown, the results from both techniques are in excellent agreement.

For one complete sensitivity analysis, the direct differentiation technique with finite difference grid

sensitivity calculations results in a 30.5 percent reduction in computing time compared to the fully

finite difference sensitivity analysis [Fig. 4]. The semi-analytical sensitivity analysis technique

with semi-analytical grid sensitivity calculations yields a 39 percent reduction in computing time

compared to the finite difference approach [Fig. 4]. This further illustrates the efficiency of the

discrete semi-analytical technique for grid sensitivity calculations.
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Table 2. Sensitivity of the drag coefficient, (dCD/dt_i).

Design variable

Sweep (_,)

Root chord (Co)

Wing span (Ws)

Thickness/chord (t c)

Finite difference

-0.0097676 (1/deg.)

0.0382632 (I/m)

0.0241877 (I/m)

1.4164357

Semi-analytical

method (with finite

difference grid

sensitivity)

-0.0096949 (1/deg.)

0.0356884 (I/m)

0.0240876 (I/m)

1.4218040

Semi-analytical

method (with semi-

analytical grid

sensitivity)

-0.0097558 (l/deg.)

0.0377937 (1/m)

0.0241989 (l/m)

1.4233772

Table 3. Sensitivity of the lift coefficient, (dCL/d¢i).

Design variable

Sweep (_,)

Root chord (Co)

Wing span (Ws)

Thickness/chord (tc)

Finite difference

-0.0943222 (1/deg.)

0.0738337 (I/m)

0.0713310 (l/m)

- 1.9207192

Semi-analytical

method (with finite

difference grid

sensitivity)

-0.0944966 (1/deg.)

0.0795423 (l/m)

0.0721375 (l/m)

- 1.9154491

Semi-analytical

method (with semi-

analytical grid

sensitivity)

-0.0955675 (1/deg.)

0.0745353 (I/m)

0.0717341 (I/m)

-1.9166282
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Comparison of CPU time for aerodynamic sensitivity analysis.
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4. Optimization Techniques

The multidisciplinary optimization procedure for the design of aerospace systems such as

high speed wing-body configurations requires the integration of several major disciplines. Since

an "all-at-once" approach in such cases is complex and inefficient, the problem is formulated using

a non-hierarchical, multilevel decomposition technique. In general, the optimization problem at

each level involves several objective functions, constraints and design variables. In the present

work, two different multiobjective formulation techniques have been used. These are the

Kreisselmeier-Steinhauser (K-S) function [106-107] approach and the modified global criteria [ 13]

technique. At levels where the K-S function approach is used, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [108] is used to solve the unconstrained nonlinear optimization

problem. At levels where a single objective function is involved, a nonlinear constrained

optimization algorithm based on the method of feasible directions [109-110] is used. At each level,

the optimization procedure is coupled with an approximate analysis technique based on a two-point

exponential expansion [111] thus making the overall procedure computationally efficient. The

following sections describe these procedures.

4.1 Multilevel Decomposition

The formulation of a MDO problem using a two-level procedure is illustrated in Fig. 5.

For example, in the case of an integrated aerodynamic and structural optimization of high speed

aircraft, level 1 may optimize aerodynamic criteria and level 2 may address structural criteria [92-

93, 100-101].

Each level is characterized by a multiobjective optimization problem with vectors of

objective functions, constraints and design variables. The formulation is outlined below.

Level 1

Minimize F_(tI _1) i = l, ..., NOBJ 1

subject to gl( t) _<0 k = l, --- , NC 1

NDVI _F2* 1

E "-_-il A_i

i=l

-< 82j J = I,...,NOBJ 2

,IL -<,I -- i = 1,... ,NDV l
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NDV_1 2" _2U2* °-J*_...kJAA! _<
,2L <_,j + ad

i=l

j = 1, ..., NDV 2

where F ! and F 2 are the objective function vectors at levels 1 and 2, respectively. The

corresponding constraint vectors are gl and g2 and the corresponding design variable vectors are

_1 and _2. The quantity E2 represents a tolerance on the changes to the jth objective function of

level 2, during level 1 optimization. Superscripts L and U refer to lower and upper bounds,

_F 2.

respectively and the superscript (*) represents optimum values. The quantities --_ are the

optimal sensitivity derivatives of the objective functions of level 2 with respect to the design

variables at level 1. The quantities _ represent the optimal sensitivity derivatives of the design

variables at level with respect to the design variables at level 1.

_2

Minimize F_(@I)

subject to gl(Ol) < 0

8t

_L

a,l ' a,

Minimize F2 (cl_l* ' t][_2 )

subject to
g2 (till*, _[:)2) _<0

Level 1 (Aerodynamics
and/or sonic boom)

(Optimal sensitivity

parameters)

Level 2 (Structures)

Figure 5. Two-level decomposition (schematic).

Level 2

lVfirflrrflze F? (II:I I ,CI_2 ) i = 1, .-- , NOBJ 2
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subject to g2k(_l ,_2)<0 k = 1,..-,NC 2

¢}2L _< 02 _< ,i2U i = 1,--.,NDV 2

where _1. is the optimum design variable vector from level 1. This vector is held fixed during

optimization at level 2. The optimization procedure cycles through the two-levels before global

convergence is achieved. A cycle is defined as one complete sweep through all the levels of

optimization. Optimization at an individual level also requires several iterations before local

convergence is achieved. The different levels are linked through the use of optimal sensitivity

parameters which are essential in maintaining proper interdisciplinary coupling.

4.2 Multiobjective Formulations

In general, a subproblem within a multilevel optimization procedure, as described above,

involves multiple objective functions and constraints. Since traditional optimization techniques

address problems with a single objective function, it is essential to use formal multiobjective

formulation techniques for such applications. In this research, two multiobjective formulation

techniques namely, the Kreisselmeier-Steinhauser (K-S) function approach and the modified global

criteria technique, have been used. The following sections describe these two formulations in

detail.

4.2.1 Kreisselmeier-Steinhauser (K-S) Function Approach

The Kreisselmeier-Steinhauser (K-S) function approach [ 106-107] has been successfully

used in various aircraft design applications [96-101]. In this approach, the original objective

functions are scaled into reduced objective functions. Depending on whether the individual

objective functions are to be minimized or maximized, these reduced objective functions assume

one of the two following forms

* Fk(_)

Fk(_) - Fko - 1.0 -gmax -< 0 k= 1..... NOBJmin (32a)

• Fk(O)

Fk(_) = 1.0- Fko -gmax -< 0, k = 1..... NOBJmax (32b)

where Fko represents the original value of the k th objective function (Fk) calculated at the beginning

of each cycle and • is the design variable vector, gmax represents the largest constraint in the

original constraint vector, gj(_), and is held constant during each cycle. The reduced objective
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functionsareanalogousto constraints.Therefore,anewconstraintvector,fro(O) (m = 1,2, ...,

M where M = NC + NOBJ), that includesthe original constraintsandthe reducedobjective

functions(Eqs.32aor 32b), is introduced.Thedesignvariablevectorremainsunchanged.The

newobjectivefunctionto beminimizedis definedusingtheK-Sfunctionasfollows

M
FKS(_) = fmax+ lloge Y_eP(fm(_)-frnax) (33)

P m=l

where fmax is the largest constraint in the new constraint vector fm(_) and in general, is not equal

to gmax. The composite function FKS(_), which represents an envelope function of the original

objective functions and constraints, can now be minimized using a suitable unconstrained

optimization technique.

An example of how the K-S function formulation works is illustrated in Figs. 6a and 6b for

an optimization problem with two objective functions to be minimized and one constraint. The

objective functions and the constraint are functions of single design variable, _. An initial design

point of _o = 0.5 is used in the example. At this point, the constraint is satisfied and, therefore,

gmax is negative. The original constraint and the two additional constraints from the two reduced

objective functions, calculated from Eq. 32a, are shown in Fig. 6b along with the K-S function

envelopes for two different values of p. Since gmax is negative, the constraints due to the two

reduced objective functions are positive and hence, violated, at the initial design point, _o. It is

seen in Fig. 6b that for p = 1, the K-S function includes contributions from all the three constraints.

For a larger value of p = 3, the K-S function gets a stronger contribution from the largest

constraint and weaker contributions from the other two. Thus large values of p "draw down" the

K-S function closer to the value of the largest constraint. The value of p may change from cycle to

cycle. It is progressively increased so that, as the optimization proceeds, the K-S function more

closely represents only the largest constraint (or the most violated reduced objective function).
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Figure 6a. Original objective functions and constraints.

F 1 - reduced objective function 1

F 2 - reduced objective function 2
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Figure 6b. K-S function envelope.
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4.2.2 Modified Global Criteria Approach

The modified global criteria approach [13] is an alternate way to formulate multiobjective

problems. In order to understand this approach, consider a problem with two objective functions,

fl (O) and f2(_). Let r1 and f2 be their corresponding individually optimized values or known
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target values. The two original objective functions are combined into the global criteria function,

F(_), as follows.

F(cI_) = 4(fl - fi) 2 + (f2 - f2) 2 (34)

The global criteria function, F(_), represents the new objective function which is to be minimized.

The minimization of F(_) forces the values of fl and f2 towards their target values.

4.3 Approximate Analysis

The optimization techniques used in this research are gradient-based and they require

evaluations of the objective functions and constraints during every iteration of optimization. Since

it is computationally expensive to evaluate these functions through exact analysis all the time, an

approximate analysis technique is used within each iteration of the optimization. The two-point

exponential approximation technique developed by Fadel et al. [111], has been found to be well

suited for nonlinear optimization problems and has been used in the present research for

approximating the objective functions and the constraints within the optimizer. The technique is

formulated as follows.

N°vI/0nlpnl_(*) = F(*I)+ n__.__1 _ -1.0 Pn c_bn
(,z,l) (35)

where l_k(CI_) is the approximation to the objective function Fk at a neighbouring design point _,

based on its values and its gradients at the current design point _l and the previous design point

_0. The approximate values for the constraints, _j(q_), are calculated in a similar fashion. The

exponent Pn, in Eq. 35 is defined as:

Pn = + 1.0 (36)
l°ge{_On } - l°ge{_ln }

The exponent Pn explicitly determines the trade-offs between traditional and reciprocal Taylor

series based expansions (also known as a hybrid approximation technique). In the limiting case

when Pn = 1, the expansion is identical to the first order Taylor series and when Pn = -1, the two-

point exponential approximation reduces to the reciprocal expansion form. In the present work,

the exponent is defined to lie within this interval, - 1 < Pn < 1. If the exponent Pn is greater than 1,

it is set equal to one and if Pn is less -1, it is set equal to -1. Equations 35 and 36 indicate that
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many singularity points may exist in the use of this method and hence, care must be taken to avoid

such points. In the present study, when singularity problems arise, the approximation technique is

reduced to the linear Taylor series expansion (Pn = 1).

5. Applications of Multidisciplinary Design Optimization

A significant aspect of this research has been the development and application of MDO

procedures for aerospace designs. Several different MDO procedures have been developed. The

first example optimizes a theoretical, minimum drag body of revolution. This procedure is similar

to the optimization study conducted by Cheung et al. [78] and serves as a benchmark test for the

optimizer. The second example addresses the integrated aerodynamic/structural optimization of

high speed, delta wing-body configurations. The two-level decomposition technique described

earlier has been used in this application. The third MDO procedure has been used for the coupled

aerodynamic and sonic boom optimization of high speed wing-body configurations in a single

level. The K-S function multiobjective formulation technique is employed within this application.

The fourth MDO procedure has been developed using a two-level decomposition technique for

high speed wing-body design where aerodynamic and sonic boom criteria are improved in level 1

and structural criteria are optimized in level 2. These four MDO procedures use the

computationally intensive CFD solver, UPS3D [90], for aerodynamic analysis. Hence, the semi-

analytical sensitivity analysis techniques for calculating aerodynamic design sensitivities are used

for these four MDO procedures.

5.1 Aerodynamic Optimization of a Theoretical Minimum Drag Body

The first optimization procedure is applied to a body of revolution to minimize its wave

drag. The reference geometry used is the Haack-Adam (H-A) body [117-118]. This is a body of

revolution with a pointed nose and a base of finite area (Fig. 7). The H-A body has minimum drag

amongst all bodies in its class, according to slender-body theory for linearized, supersonic flows

[117-118]. In the present research, the minimization of the wave drag coefficient (inviscid, no lift

case) of the H-A body is carried out as a benchmark test. Results obtained are compared with

those obtained in Ref. 78.

5.1.1 Haack-Adam (H-A) Body

The H-A body (Fig. 7) is an axisymmetric body whose radius, r, varies with the axial

coordinate, x, as follows.
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r 2 Abase 7t-0+ sin20 +714sin30+ ]_ ]t m
2 XAma x 3 m=2 _ m m+2rmax

(43)

where

(44)

In the above equations, Abase is the base area of the H-A body, Amax is the cross-sectional area at

the section of maximum thickness (Xmax) and lb denotes the length of the body. The wave drag is

non-dimensionalized by the product of the freestream dynamic pressure and the maximum cross-

sectional area (Amax). The resulting wave drag coefficient (CDw), from slender body theory, is

given by

_g

.,.,_

I I I I I I I I I

0. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Axial coordinate, x (m)

Figure 7. Haack-Adam body.

71;12 I(4Abase/2 '' +l)(4A___b_se ]tm/2 }CDw-4 maxkt (m t,
(45)

By definition, a H-A body satisfies the conditions that 1) the base area, Abase, is fixed and non-

zero, 2) the slope at the end, (dA/dx)lx=lb , is zero and 3) the location of the maximum thickness,

Xmax, is fixed. It can be verified that Eq. 43 satisfies the first two conditions automatically. The

third condition determines the value of _'1 to be,

1 _ 1b (46)
_t1 - 2cOS0max 2(2Xmax-lb)
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Thewavedragcoefficientis independentof thefreestreamMachnumberbecausetheH-A body
satisfiestheconditionthattheslopeof theareaattheend,(dA/dx)lx=ib, is zero. FromEq. 45, it is

clearthat,for abodywith minimumwavedrag,_'m= 0 for m > 2.

5.1.2 Results and Discussion

In the present research, the optimization of the H-A body is initiated with identical

geometric parameters as reported in Ref. 78. The length of the H-A body (lb) = 0.9 m and the

fineness ratio (lb/2rmax) = 7. The location of the maximum thickness (Xmax) = 0.525 m and the

corresponding value of theta (emax) = cos -1(1/6). The ratio of the base area to the maximum area

(Abase/Amax) = 0.532. Condition 3 requires the H-A body to satisfy (dA/dx)lx=Xmax = 0. In the

present research, this slope has been allowed to change in such a way that -1 < (dA/dx)lx=Xmax _<1.

This condition is expressed as follows.

2sin 0ma x +471 sin 2 0ma x cOS0max +

]_ )'m {c°s(m)0max - cos(m + 2)0ma x }
m=2

< 1 (47)

Also, a constraint is imposed during the optimization to ensure that the radius of the optimal body

is greater than zero. This constraint is expressed as follows.

(re-0 +2sin 20)+ )'1 4sin3 0+ m=2_" "fm (sin(m)0'-m sin(m +2)0m+2 j>0
(48)

for all rt > 0 > 0.

In the present research, five coefficients from Eq. 43, namely, )'2, "f3..... _'6 have been

used as design variables. The reference values of these five coefficients are zeroes, corresponding

to the theoretical minimum wave drag H-A body (Eq. 45). The wave drag coefficient (CDw) is

used as the objective function to be minimized subject to two constraints, given by Eqs. 47 and 48.

The optimization is carried out at a free stream Mach number of 2.5 and angle of attack of zero

degrees. The flow analysis is performed using the UPS3D solver [90-91] and the inviscid option

has been used to obtain the wave drag coefficient. The computational grid uses 21 points in the

circumferential (rl) direction, 70 points in the normal (_) direction and a maximum marching step

size of 0.0009 m. Table 4 presents the reference and optimum values of the design variables and

the wave drag coefficient. In Table 4, column 2 reproduces the optimum values obtained by

Cheung et al. [78] and column 3 gives the optimum values obtained from the present research.

The developed procedure yields a 6.6 percent reduction in the wave drag coefficient which is better
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thanthe5 percentreductionachievedin Ref. 78. Figure8 comparesthedragcoefficientsof the
referenceandtheoptimumconfigurations.Clearly, thecurrentprocedureyieldsa betteroptimum

thanthatobtainedin Ref.78. Figure9 comparesthereferenceandoptimumconfigurations.The

optimum body hasa reducedradiusdistribution in the noseregioncomparedto the reference
geometry,in orderto reducethewavedragcoefficient. However,theradiusof theaft increasesin

theoptimumconfigurationin orderto satisfythetwo constraintsimposedduring theoptimization

(Eqs.47and48). Similar trendsareobservedin theoptimumgeometryobtainedin Ref.78.

Table4. Comparisonof designvariablesandobjectivefunction.

Designvariablesand

performancefunction

Reference(Haack- Optimum Optimum

Adambody) (Cheun_) (present)
0.00000 0.85300 0.73866

0.00000 0.67300 0.45117

0.00000 0.49500 0.27602
0.00000 0.42000 0.38728

0.00000 0.08460 0.15854

0.07599 0.07220(-5.0 %) 0.07095(-6.6 %)

¥2

Y3

Y4

Y5

Y6

Dra_coefficient,CD

0.08-!

[] reference (Haack-Adam)

[] optimum (Cheung)

[] optimum (present)

0.076- /

-5.0 % -6.6 %
0.072-

O

¢.J

_O 0.068-

: 0.064-

0.06 /-

Figure 8. Comparison of wave drag coefficient (CDw)-
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Figure 9. Comparison of reference and optimum body configurations.

5.2 Multidisciplinary Optimization of High Speed Wing-Body Configurations

The second MDO procedure developed in this research uses a two-level decomposition

technique that addresses the simultaneous improvement of aerodynamic and structural performance

of high speed wing-body configurations [92-93]. From aerodynamics point of view, the drag

coefficient (CD) must be minimized while maintaining the lift coefficient (CL) above a desired

value. From a structural perspective, the aircraft weight (W) must be minimized while maintaining

the stresses in the load carrying members within allowable limits. These requirements are

formulated as a two-level optimization problem as follows.

5.2.1 Multilevel Optimization Formulation

In a typical aircraft design, the aerodynamic performance criteria dictate the planform

geometry of the aircraft wing. After designing the planform, the wing load carrying member is

designed to carry the loads arising from aerodynamics, inertia and gravity. Keeping this in mind,

the two-level optimization procedure improves the wing-body aerodynamic performance at level 1

and the structural performance at level 2. These optimization problems are stated as follows.
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Level 1 (Aerodynamics)

Mmirrflze

Drag coefficient (CD)

subject to the constraints

CL -> CLmin (Lift coefficient constraint)

W<W* (Optimal weight constraint)

L * NDVI _0J2A u
_bj2 -< _bj2 + _ _il -< _j2

i= 1 _Oil j = 1..NDV2 (Side constraints)

L U

_il -< (_il -< (_il i = 1..NDV1 (Side constraints)

where _l denotes the vector of aerodynamic design variables, _2 denotes the structural design

variable vector, NDVl and NDV2 denote the number of aerodynamic and structural design

variables respectively and the superscripts L and U denote lower and upper bounds on the design

variables respectively.

Level 2 (Structures)

Miffmflze

Weight (W)

subject to the constraints

(Y --< (Yall (Stress constraints)

L U

(_i2 <- (_i2 -< t_i2 i= 1..NOV2 (Side constraints)

where a is the vector of stresses at aircraft wing root and (Sall is the corresponding vector of

material limits. During the structural optimization at the second level, the aerodynamic design

variables of level 1 (¢1) are held fixed at their optimum values. The quantities, _)W* ¢)t_j2
0t_il and-_i 1 are

the sensitivities of the optimum values of the second level (structural) objective function and the
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design variables with respect to first level (aerodynamic) design variables. These optimal

sensitivity derivatives provide the necessary coupling between the two disciplines.

5.2.2 Wing-Body Configuration

The two-level procedure and the semi-analytical sensitivity analysis techniques are applied

to the design optimization of the delta wing-body configuration illustrated in Fig. 2. The

description of the delta wing-body configuration has been presented earlier. The values of the

parameters describing the delta wing-body configuration are: wing root chord (Co) = 7.08 m,

leading edge sweep (_) = 66.0 degrees, wing span (Ws) = 3.53 m, wing thickness-to-chord ratio

(tc) = 0.052, maximum radius (rm) = 0.57 m, nose length (ln) = 6.01 m, wing starting location

(Xw) = 8.21 m and body length (lb) = 17.52 m. This reference design has been used in Ref. 120

for sonic boom prediction and comparison with wind-tunnel data. The wing leading edge sweep

0_), root chord (Co), wing span (Ws) and thickness-to-chord ratio (tc) are used as design variables

in level 1 optimization and hence, change from their reference values during optimization. The rest

of the planform parameters of the delta wing-body are held fixed throughout the optimization.

5.2.3 Wing Structural Model

In this study, a simple structural model has been used. The wing is assumed to carry all

the aerodynamic loading. The load carrying structural member of the wing is modeled as a single

celled, isotropic, rectangular box beam with unequal wall thicknesses [Fig. 10]. In Fig. 10, the

quantity c is the local chord length of the wing section. The beam width-to-chord ratio (Wc),

horizontal wall thickness-to-chord ratio (tw) the vertical wall thickness-to-chord ratio (tv) are used

as design variables during the structural optimization at level 2.

The wing structural analysis is performed using a code developed in-house. The code is

capable of analyzing single celled isotropic box beams with rectangular cross-sections, unequal

horizontal and vertical wall thicknesses and linear sweep and taper distributions. The structural

analysis is initiated slightly inwards of the wing tip. This ensures that the sharp wing tip of the

delta wing-body does not give rise to a singular point. The wing weight (W) is calculated as the

sum of the weight of the box beam (Wbox) and the weight of the skin (Wskin). The normal and

shear stresses 03) at the root section of the beam are calculated using thin wall theory [119]. The

isotropic box beam and the wing skin are made of 2014-T6 Aluminum alloy. The alloy has a

density of 2800 Kg/m 3, tensile yield strength of 410 MPa and a shear yield strength of 220 MPa.

The reference values of structural design variables are: spar width-to-chord ratio (Wc) of 0.5, spar

horizontal wall thickness-to-chord ratio (tw) of 0.0015 and vertical wall thickness-to-chord ratio

(th) of 0.0075.
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Figure 10. Wing cross-section and wing spar (box beam).

5.2.4 Results and Discussion

The optimization is performed for a cruise design Mach number of 2.5 and an angle of

attack of 5 degrees. The inviscid, supersonic flow field is calculated using the CFD solver,

UPS3D [90]. The inviscid drag and the lift forces are non-dimensionalized using the product of

the dynamic pressure and a unit reference area, to yield a drag coefficient, denoted CDu, and a lift

coefficient, denoted CLu. Though the use of a unit reference area yields high values for these non-

dimensional coefficients, improvements in these coefficients directly reflect improvements in the

corresponding aerodynamic forces. A maximum step size of 0.01 m is used to march in the

direction. The aerodynamic design sensitivities, required during the level 1 aerodynamic

optimization, are calculated using the semi-analytical sensitivity analysis procedures [94-95]

described before. A hyperbolic grid with 75 points in the circumferential (11) direction and 80

points in the normal (_) direction is used for the flow analysis. Further refinement of the grid does

not alter the flow solution.

The iteration histories of the drag and the lift coefficients (CDu and CLu) of the wing-body

configuration, during the level 1 aerodynamic optimization, are compared in Figs. 11 and 12,

respectively. Significant improvements are observed in both the quantities. The drag coefficient

decreases by 5.5 percent and the lift coefficient increases by 5.43 percent. All the increase in the

lift coefficient occurs in the first iteration of the optimization after which the lift coefficient is

maintained at its improved value through the rest of the optimization. The lift coefficient constraint
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is a violated constraint in the first cycle of optimization. The optimizer, based on the method of

feasible directions, establishes feasibility by increasing the lift coefficient to its desired value,

CLmin, in the first cycle. Increasing the lift coefficient any further results in an associated increase

in the induced drag. As a result, the optimizer maintains the lift coefficient constraint active. The

constraint imposed on the weight, is well satisfied during the level 1 optimization.

0.26"

_ 0.25

0.24

0 I0 20 30

Iteration

Figure 11. Iteration history of drag coefficient, (CDu).

Figure 12.
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Iteration history of lift coefficient, (CLu).

Table 5. Aerodynamic design variables.

Design variable Reference Optimum

Sweep (_,) 66.00 deg. 65.33 deg.

Root Chord (c o) 7.08 m 7.70 m

Wing Span (Ws) 3.530 m 3.617 m

Thickness-to-chord (tc) 0.05200 0.03105

Table 5 compares the reference and the optimum values of the aerodynamic design variables used

in the aerodynamic optimization. The root chord is increased significantly from its reference value
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(8.76 percent), whereas the wing thickness-to-chord ratio is decreased significantly (40.29

percent). The wing span and the leading edge sweep are maintained close to their reference values

(2.94 percent and 1.01 percent respectively). The reduction in the wing thickness-to-chord ratio

decreases the form drag of the diamond airfoil section. The optimization is driven by this reduction

in drag. The increase in the wing planform area, caused by the increase in the root chord and the

wing span, helps improve the lift of the aircraft in spite of the decrease in the wing thickness-to-

chord ratio. Though the drag and the lift coefficients have been non-dimensionalized using a unit

reference area in this study, the optimization procedure allows a traditional non-dimensionalization

using the wing planform areas.

The iteration history of the weight of the wing body configuration is presented in Fig. 13.

Considerable reduction (18.13 percent) in the weight is observed. The shear and the normal

stresses at the blade root remain well within the allowable limits of the chosen Aluminum alloy.

Table 6 compares the reference and optimum values of the structural design variables. The spar

width to chord ratio, horizontal and vertical wall thickness to chord ratios decrease significantly

from their reference values (60 percent, 60 percent and 65.2 percent respectively). In spite of the

increased planform area, the weight is reduced through significant reductions to the wall

thicknesses and wing thickness-to-chord ratio.

Weight
(Kg)
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29000
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Figure 13. Iteration history of weight.
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Table 6. Structural design variables.

Design variable

Spar width-to-chord ratio (Wc)

Horizontal wall thickness-to-chord ratio (tw)

Vertical wall thickness-to-chord ratio (tv)

Reference Optimum

0.5 0.2

0.0015 0.0006

0.0075 0.00261

5.3 Integrated Aerodynamic/Sonic Boom Optimization

One of the desired objectives of high speed (supersonic) aircraft designs is to arrive at low

sonic boom configurations. Such designs would have minimum environmental impact thus

making them viable for operation over population centers. At the same time, such designs should

also be able to produce optimum aerodynamic performance so that they are economically viable

too. These considerations give rise to an important multidisciplinary design optimization problem

requiring minimum sonic boom and maximum aerodynamic performance from the designs. In this

section, an optimization procedure that has been developed to reduce the sonic boom levels of high

speed wing-body configurations without deteriorating their aerodynamic performance, is

described. The sonic boom of an aircraft is measured in terms of the pressure disturbances it

produces at designated distances from the aircraft. The pressure disturbance at any point is given

by Ap = (p - poo)/po,,, where p is the pressure at the point of interest and poo is the free stream

pressure. Figure 14 presents the overpressure signature (Ap) produced by the delta wing-body

configuration described in Section 3.5. The aircraft is flying at a Mach number of 2.5 and angle of

attack of 5 degrees at a cruise altitude of about 16,500 m. The pressure signature is captured at the

ground level (this corresponds to 941.2 times the length of the aircraft, vertically below the

aircraft). The pressure signature has two positive pressure peaks and a negative peak. The first

positive pressure peak (Apl) corresponds to the pressure jump associated with the shock wave at

the nose of the aircraft. The second positive peak (Ap2) is due to the shock wave created by the

aircraft wing. The negative pressure peak corresponds to expansion waves in the flow field past

the wing trailing edge. From a sonic boom perspective, it is desirable to minimize these positive

pressure peaks in the overpressure signal. From aerodynamics point of view, it is of interest to

minimize the aerodynamic drag to lift ratio (CD/CL) while maintaining the lift coefficient (CL) at a

desired level. In the following sections, the sonic boom analysis procedure and the various

optimization formulations to reduce sonic boom levels of high speed wing-body configurations are

presented.
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Figure 14.
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Sonic boom pressure signature of a supersonic wing-body configuration.

5.3.1 Sonic Boom Analysis

For isentropic flow past smooth axisymmetric bodies, the pressure disturbances (sonic

boom) at large distances from the aircraft can be evaluated by using the Whitham F-function [121 ],

which is based on the Abel integral of the equivalent area distribution of the aircraft. Lighthill

[122] developed an alternate formulation of the F-function which was shown to be suitable for

sonic boom prediction for projectile geometries. Walkden [123] extended Whitham's theory for

application to wing-body configurations. The asymptotic forms of the equations used in

developing the sonic boom overpressure signature (Ap) are as follows.

F(y) = _- 13Rvol (t)

 I2h1 oo [_RI+2-_ _ft(t)

i

y-t dSvol(t)

13Rvol (t)

i

y-t dSlift(t )
13Rl ft(t)

I 2 hi y-t ]dS,int(t)+ 1 i _R_nt(t) L[3Rint(t)

Ap = yM_F(y)/

= (Moo 2 - 1) 0.5

_: = (T + 1)Moo4/[_*(2_) 0'5]

(49)

(5O)

(51)

(52)
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x = y+13do-_c.fd--_oF(y) (53)

where y is the ratio of specific heats (1.4 for air) and Moo is the freestream Mach number. The first

integral of Eq. 49 is associated with the volume of the flying object, the second integral is

associated with the lift and the third integral is associated with the interference lift for a winged

body [123]. Rvol, Rlift and Rint are the equivalent radii of the flying object based on its volume,

lift and wing-body interference, S' is the derivative of the area distribution of the flying object and

h is the Heaviside unit step function. The quantity, y(x, do) = constant is a characteristic curve

where x is the streamwise distance and do is the distance normal to the flight axis. Since the above

models are based on linearized theory, they are inaccurate in predicting sonic boom in highly

nonlinear flows such as the flow at angle-of-attack at higher Mach numbers (Moo > 2). Reference

124 describes an F-function extrapolation method to evaluate the pressure signature at a distance d l

from known pressure at distance do (dl > do). The pressure signature at distance do, where the

flowfield is assumed to be locally axisymmetric, is evaluated either by measurements in a wind

tunnel or through computation and the value of the F-function is calculated from Eq. 50. Since the

pressure signal propagates at the local speed of sound and each point of the signal advances

according to its amplitude, the signal is distorted and the F-function becomes multivalued at a

farther distance dr. A new F-function at dl is then obtained by placing discontinuities (shocks) in

such a way that the discontinuities divide the multivalued regions with equal areas on either side of

them. This new F-function gives the overpressure signature at dl using Eqs. 50 through 53.

Cheung et al. [120] have combined Whitham's quasilinear theory with the three-

dimensional PNS code, UPS3D, to predict sonic boom. The flow field associated with wing-body

configurations is evaluated by UPS3D and the overpressure signal for the near field is evaluated.

The overpressure signals at specified far fields are then obtained using one of three different

approaches for various configurations such as a cone-cylinder, a low aspect-ratio rectangular wing

and a delta wing-body. In the first approach (for nonlifting cases), the UPS3D code is modified so

as to incorporate a sonic boom prediction capability including all nonlinear effects. The second

approach is applicable to both lifting and nonlifting cases. In this approach, the extrapolation

method described earlier [ 124] has been used for predicting sonic boom. In the third approach (for

lifting cases), the equivalent area distribution due to lift is generated by the surface pressure

coefficients calculated by the CFD solver. The equivalent area distribution due to volume is

calculated from the geometry of the aircraft. Summation of the two equivalent area distributions

yields the total equivalent area distribution that gives the F-function of the body.
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In thepresentresearch,thesecondapproach,basedontheextrapolationtechniqueof Ref.
124,hasbeenusedto obtainthesonicboomsignatures.Thisextrapolationprocedurehasbeen

validatedby comparisonwith windtunneldatain Ref. 120by applyingit to thedeltawing-body

configurationdescribedin Section3.5.

5.3.2 Sonic Boom Sensitivities

The optimization procedures used for sonic boom minimization require the sensitivities of

the overpressure peaks (Apl and Ap2). The near field pressure signature, at a distance do, is

directly calculated by the UPS3D code. The sensitivity of this near field pressure signature is part

of the aerodynamic flow sensitivities calculated using the semi-analytical procedure based on the

direct differentiation approach [94-95], described earlier. Using these sensitivities, perturbed near

field pressure signatures are generated for each design variable. These perturbed near field

signatures are then extrapolated using the sonic boom extrapolation procedure [124] to obtain

perturbed far field signatures corresponding to each design variable. These perturbed far field

signatures are then used to obtain the sensitivities of the pressure peaks using finite difference

techniques.

5.3.3 Optimization Formulation

The multidisciplinary optimization procedure must lead to minimum sonic boom while

maintaining or improving the aerodynamic performance of the aircraft. From a sonic boom

perspective, it is desirable to minimize the first and the second peaks (Apl and Ap2) in the

overpressure signal at a given distance, dn, away from the aircraft. From aerodynamics point of

view, the drag to lift ratio (CD/CL) must be minimized while maintaining the lift coefficient (CL) at a

desired level. The optimization problem can be stated as follows.

Minimize

Apl, Ap2 and CD/CL

subject to the constraints

CLmin <- CL -< CLmax

CI_min < cI_ _< Cl_max

where • is the design variable vector and the subscripts "min" and "max" denote lower and upper

bounds, respectively. It must be noted that both upper and lower bounds have been imposed on
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the lift coefficient. While thelowerboundensurestheprescribedminimumlifting capability,the
upperboundis designedto keepthesonicboomlevelsfrom increasing.This isbecause,thesonic

boomoverpressurepeaksincreasein value as the lift increases [122]. Some of the optimization

studies presented in the following sections, do not include the second pressure peak (Ap2) as an

objective function and, in some cases, omit the lift coefficient constraints.

5.3.4 Wing-Body Configurations

The above multiobjective optimization procedure is applied to two high speed wing-body

configurations. The first configuration is the delta wing-body configuration, illustrated in Fig. 2

and described in Section 3.5. The second configuration addressed is a doubly swept wing-body

configuration (Fig. 15). The doubly swept configuration is characterized by two sweep angles, XI

and )_2, root chord, Co, tip chord, ct, break length, Xb, maximum body radius, rm, nose length, ln,

wing starting location, Xw and total body length, lb. The wing cross-section is a diamond airfoil

with thickness-to-chord ratio, tc. A combination of these geometric parameters forms the design

variable set.

The inviscid flow field around the vehicle is evaluated using the CFD solver, UPS3D, over

a flow domain that extends from the tip of the body up to three times the body length in the

longitudinal direction. The pressure field at a distance do - 0.5 lb measured from the axis (directly

beneath the aircraft) is evaluated from the flow field solution. The sonic boom at a far field

distance dj is then evaluated using the extrapolation procedure of Ref. 124. Two specified far field

distances have been considered during optimization. The first of the two corresponds to a distance

dl = 3.61 lb from the axis of the body and is denoted "near field" in the text. The second distance

considered is dl- 941.7 lb from the axis of the body and is denoted "far field" in the text. This far

field distance corresponds to the ground level for an aircraft flying at an altitude of approximately

16,500 m. The optimization of both configurations is performed at a design cruise Mach number

of 2.5 and angle of attack of 5 degrees. A hyperbolic grid with 75 points in the circumferential (q)

direction and 80 points in the normal (_) direction is used for the flow analysis. The maximum

step size for marching in the _ direction is set to 0.01 m. The semi-analytical sensitivity analysis

procedures, described before, are used to calculate the aerodynamic and sonic boom design

sensitivities.
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Figure 15. Doubly swept wing-body configuration (schematic).

The inviscid flow field around the vehicle is evaluated using the CFD solver, UPS3D, over

a flow domain that extends from the tip of the body up to three times the body length in the

longitudinal direction. The pressure field at a distance do = 0.5 lb measured from the axis (directly

beneath the aircraft) is evaluated from the flow field solution. The sonic boom at a far field

distance dl is then evaluated using the extrapolation procedure of Ref. 124. Two specified far field
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distanceshavebeenconsideredduringoptimization.Thefirst of thetwo correspondsto adistance

dl = 3.61 lb from the axis of the body and is denoted "near field" in the text. The second distance

considered is dl= 941.7 lb from the axis of the body and is denoted "far field" in the text. This far

field distance corresponds to the ground level for an aircraft flying at an altitude of approximately

16,500 m. The optimization of both configurations is performed at a design cruise Mach number

of 2.5 and angle of attack of 5 degrees. A hyperbolic grid with 75 points in the circumferential (rl)

direction and 80 points in the normal (4) direction is used for the flow analysis. The maximum

step size for marching in the _ direction is set to 0.01 m. The semi-analytical sensitivity analysis

procedures, described before, are used to calculate the aerodynamic and sonic boom design

sensitivities.

5.3.5 Delta Wing-Body Optimization

For the delta wing-body configuration case, the leading edge sweep (_,), the wing root

chord (Co), the wing span (Ws), the airfoil thickness-to-chord ratio (tc), the maximum nose radius

(rm) and the nose length (In) are used as design variables. The reference values of the delta wing-

body parameters are: wing root chord (Co) = 7.08 m, leading edge sweep (_,) = 66.0 degrees, wing

span (Ws) = 2.96 m, wing thickness-to-chord ratio (tc) = 0.052, maximum radius (rm) = 0.57 m,

nose length (In) = 6.01 m, wing starting location (Xw) = 8.21 m and body length (lb) = 17.52 m.

The wing starting location (Xw) and the body length (lb) are held constant during the optimization.

Near Field Sonic Boom Minimization ( dl = 3.61 lb )

The results from the optimization of the pressure signature at a distance of 3.61 lb (directly

below the aircraft) are presented first. Two sets of results are presented. In the first case, the

optimization is performed for minimum CD/CL and minimum first sonic boom peak (Apl) with a

constraint on the lift coefficient (CLmin < CL < CLmax). In the second case, the same objectives

are optimized without any lift constraint. Results from the first case are discussed first. The

bounds chosen for the lift coefficient are CLmin = CLref and CLmax = 1.02 CLref, where CLref is the

lift coefficient of the reference configuration. Table 7 compares the reference and the optimum

values of the six design variables and the performance functions used in the optimization.

Reductions are observed in the wing thickness-to-chord ratio and nose radius whereas nose length

and wing root chord have increased. Small changes in the leading edge sweep and wing half span

are observed. Figure 16 compares the geometries of the reference and optimum configurations.

Figure 17 compares the reference and optimum values of the objective functions. The objective

functions have been normalized with respect to their corresponding reference values in Fig. 17.

There is a significant drop in the sonic boom level (11.1%) for the optimum configuration. The
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drag-to-lift ratio hasalso decreasedby 4.3 percent. The dragcoefficient hasdecreasedby 2.6
percentandthelift coefficienthasincreasedby 1.8percentfor theoptimizedconfiguration. The

dragforcehasdecreasedby 3.3percentandthelift forcehasincreasedby 1.1percent.Figure 18a

presentsthe referenceandoptimum pressuredistributionsat dl= 3.61 lb. The same signature

extrapolated to the ground level (dl = 941.7 lb) is presented in Fig. 18b. Clearly, the first pressure

peak in these signatures (Apl) are smaller for the optimum configuration. However, the second

pressure peak (Ap2) has increased by 1.2 percent in the near field signature. This increase is due

to the increase in the lift. It is to be noted that this second pressure peak is not an objective

function in this optimization and hence, increases slightly due to the increase in the lift.

Table 7. Delta wing-body case; near field optimization with lift coefficient constraint.

Design variables and performance

functions

Reference Optimum

Root chord, Co (m)

Leading edge sweep, _ (degrees)

Thickness to chord ratio, tc

Wing half span, Ws (m)

Nose length, In (m)

Max. nose radius, rm (m)

First pressure peak (Apl)

Second pressure peak (Ap2)

Drag-to-lift ratio, CD/CL

Drag coefficient, CD

Lift coefficient, CL

Drag force (N)

Lift force (N)

7.08 7.05

66.0 64.4

0.05200 0.04894

3.53 3.4873

6.01 6.2528

0.570 0.5363

0.033195 0.029022

0.058374 0.060113

0.11681 0.11178

0.02446 0.02383

0.20940 0.21318

16539.6 16000.6

141594.1 143144.3

49



Figure 16.
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Comparison of geometries; near field optimization with lift coefficient constraint.
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Figure 17. Comparison of objective functions; near field optimization with lift constraint.
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Figure 18a. Comparison of pressure signatures; near field optimization with lift constraint; d I =

3.61 lb.
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Figure 18b. Comparison of pressure signatures; near field optimization with lift constraint;

extrapolated to ground level (dl = 941.7 lb).

Table 8 summarizes the results for the second case where optimization is performed for

minimum CD/CL and minimum sonic boom (Apl) without any constraint on the lift coefficient.
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Similar to the previous case, the wing thickness-to-chord ratio and nose radius have decreased

whereas the nose length and wing root chord have increased. Small changes in the leading edge

sweep and wing half span are observed. Figure 19 compares the geometries for the reference and

the optimum configurations. Figure 20 present the reference and optimum values of the

normalized objective functions. The first peak in the pressure signature has decreased significantly

(21.5 %) for the optimum configuration. The drag-to-lift ratio has also decreased by 7.6 percent

and the drag coefficient has decreased by 12.8 percent. There is also a 5.6 percent decrease in the

lift coefficient of the optimized configuration. The drag force has decreased by 12.9 percent and

the lift has reduced by 5.8 percent.

Table 8. Delta wing-body case; near field optimization without lift coefficient constraint.

Design variables and performance

functions

Reference Optimum

Root chord, Co (m)

Leading edge sweep, _, (deg)

7.08 7.63

66.0 69.1

Thickness to chord ratio, tc

Wing half span, Ws (m)

Nose length, In (m)

Max. nose radius, rm (m)

First pressure peak (Apl)

Second pressure peak (Ap2)

Drag-to-lift ratio, CD/CL

Drag coefficient, CD

Lift coefficient, CL

Drag force (N)

Lift force (N)

0.05200 0.04680

3.530 3.254

6.01 6.611

0.570 0.513

0.033195 0.026042

0.058739 0.052679

O. 11681 O. 10790

0.02446 0.02133

0.20940 O. 19771

16539.6 14395.8

141594.1 133413.1
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Figure 20. Comparison of objective functions; near field case without lift constraint.

Figure 21a presents the reference and optimum overpressure distributions at dl= 3.61 lb

and Fig. 21b presents the corresponding signatures extrapolated to ground level (dl = 941.7 lb).

The reductions in both the peaks of the pressure signature for the optimum configuration are seen.

The changes to the geometric parameters, especially the aircraft nose parameters and the wing

thickness-to-chord ratio, cause the reductions in the sonic boom overpressure and the drag

coefficient. The reduction in the lift force is also due to the small decrease in the wing planform

area.
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Figure 21 a.
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Figure 21 b. Comparison of pressure signatures; near field case without lift coefficient

constraint; extrapolated to ground level (dl -- 941.7 lb).
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One of the advantages of the design optimization procedure is its applicability to conduct

design trade-off studies. This is illustrated by the results shown above. The two design objectives

of minimum sonic boom and improved aerodynamic performance often impose conflicting

restrictions/variations on the geometric parameters of the aircraft. This is observed to be true while

comparing the two cases described above. In the first case where a constraint on the lift coefficient

is imposed, the optimum design has an improved lift coefficient. The sonic boom signature

associated with this design is also reduced. However, an increase in the second peak is observed.

In the second case where no constraint is imposed on the lift coefficient, the reduction in the first

peak is very significant (compared to the optimum from the previous case) and the second peak is

also reduced. However, the lift coefficient also has decreased. The optimum design shows

significant improvements in CD and CD/CL values compared to the optimum design from the first

case illustrating the trade-off between low sonic boom and high lift configurations. Both sonic

boom overpressures and induced drag increase with an increase in the lift and decrease with a

decrease in the lift. The optimization procedure, in the second case, exploits this important

physical relationship and yields significantly low boom configurations with reduced CL.

Far Field Sonic Boom Minimization ( dl = 941.7 lb )

The results from the optimization of the pressure signature at a distance of 941.7 lb are

presented next. As before, optimization has been performed for minimum sonic boom first peak

(Apl) and minimum CD/CL without any constraint on the lift coefficient. Table 9 compares the

reference and the optimum values of the design variables and the performance functions used in the

optimization. The significant changes to the design variables can be seen. The wing thickness-to-

chord ratio, wing span and nose radius have reduced whereas the wing root chord and nose length

have increased. Figure 22 compares the reference and optimum geometries. Figure 23 compares

the reference and the optimum values of the normalized objective functions. The first peak in the

pressure signature has decreased by 10.2 percent for the optimum configuration. The drag-to-lift

ratio has decreased by 6.0 percent and the drag coefficient has decreased by 9.7 percent. The lift

coefficient has also decreased (3.9 %). The drag force has decreased by 13.1 percent and the lift

force has reduced by 7.2 percent. Figure 24 presents the pressure signatures for the reference and

optimum configurations. The percentage reductions in the optimum far field pressure peaks are not

as significant as those in the near field optima because the far field signature is less sensitive to

changes in the design variables. This is due to the fact that the sonic boom extrapolation procedure

coalesces all the detailed shock information into an N-wave in the far field. This also results in a

higher reduction in the aircraft lift.
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Table9. Deltawing-bodycase;farfield optimizationwithoutlift coefficientconstraint.

Designvariablesandperformance
functions

Reference Optimum

Rootchord,Co(m)

Leadingedgesweep,_.(deg)

Thicknessto chordratio, tc

Wing half span,Ws(m)

Noselength,In(m)

Max. noseradius,rm(m)

First pressurepeak(Apl)

Secondpressurepeak(Ap2)

Drag-to-liftratio,CD/CL

Dragcoefficient,CD

Lift coefficient,CL

Dragforce(N)

Lift force(N)

7.08 7.73

66.0 68.9

0.05200

3.53

6.01

0.570

0.0019479

0.0033103

0.11681

0.024460

0.20940

16539.6

141594.1

0.04680

3.2055

6.611

0.5415

0.0017499

0.0031540

0.10985

0.022099

0.20117

14374.5

131328.6

Re_nce

Optimum

Figure22.
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Comparison of geometries; far field case without lift coefficient constraint.
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Figure 24. Comparison of pressure signatures; far field case without lift coefficient constraint.
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5.3.6 Doubly Swept Wing-Body Optimization

For the doubly swept wing-body configuration case, the two leading edge sweeps (_,1 and

_,2), the break length (Xb), the wing root chord (Co), the wing tip chord (ct), the maximum nose

radius (rm), the nose length (In) and the wing starting location (Xw) are used as design variables.

The reference values of the doubly swept wing-body parameters are: root chord (Co) = 8.12 m, tip

chord (ct) = 1.62 m, first leading edge sweep (_q) = 70.2 degrees, second leading edge sweep

(_,2) = 54.9 degrees, maximum radius (rm) = 0.57 m, nose length (In) = 6.01 m, break length (Xb)

= 12.28 m, wing starting location (Xw) = 8.13 m, wing span (Ws) = 3.53 m, wing thickness-to-

chord ratio (tc) = 0.05 and body length (lb) = 17.52 m. The wing half span (Ws), the wing

thickness to chord ratio (tc) and the body length (lb) are held constant during the optimization. The

optimization of the doubly swept wing-body configuration has been carried out in two steps. In

the first step, the body radius and nose length are used as design variables to minimize the first

peak in the sonic boom pressure signature. In the second step, the wing geometric parameters are

used as design variables to minimize the second peak in the sonic boom pressure signature, while

the nose dimensions are maintained at their optimum values obtained from the first step. In both

steps, optimization is performed for minimum CD/CL and minimum sonic boom (Apl and Ape) at

a near field distance of dl = 3.61 1b. The lift coefficient is constrained using CLmin = 0.95 CLref

and CLmax = 1.05 CLref where CLref is the lift coefficient of the reference configuration. Table 10

presents the reference and the optimum values of the design variables and the performance

functions used in the optimization.

Figure 25 compares the reference and the optimum geometries. Figure 26 compares the

reference and the optimum values of the normalized objective functions. The first peak in the sonic

boom signature (Apl) has decreased by 23.6 percent in the optimum configuration. This is due to

decrease in the maximum radius (rm) and the increase in the nose length (In) during optimization.

This slender nose has a smaller equivalent area distribution for the nose region yielding a reduced

first pressure peak. Significant increases are observed in the first leading edge sweep, the root

chord and the break length of the optimum wing. These increases coupled with the decreases in

the wing tip chord and starting location result in a smaller planform area for the optimum wing.

The smaller planform area has a smaller equivalent area and lift distribution yielding a significant

reduction (19.9 %) in the second pressure peak of the sonic boom signature. Also, the increase in

the first leading edge sweep of the wing corresponds to a weaker leading edge shock in the wing.

This factor also contributes to the decrease in the second peak (Ap2) of the sonic boom signature.

The CD/CL ratio has also decreased by 3.6 percent in the optimum configuration. This percentage

reduction is small because there are simultaneous reductions in both drag and lift in this case. The
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drag coefficient hasdecreasedby 4.7 percentandthe dragforce hasdecreasedby 9.2 percent.
Thereis alsoadecreasein thelift coefficient(1.1%) andthelift force(4.9%) of theaircraft. The

increasein thefirst leadingedgesweepof the aircraftcorrespondsto a decreasedvalue of the
effectiveMachnumber.Also, theoptimumconfigurationhasa smallerplanformarea.Therefore,

thelift coefficientandthelift havedecreasedfor theoptimumconfiguration.Figures27aand27b

presentthe sonicboompressuresignaturesfor thereferenceandthe optimumconfigurationsat

nearandfar fields, respectively.Thereductionsin thetwopressurepeakscanbeseen.

Table 10. Doublysweptwing-bodycase;nearfield optimizationwith lift constraint.

Designvariablesandperformancefunctions Reference Optimum

Maximumnoseradius,rm(m)

Noselength,In(m)

First leadingedgesweep,_,1(degrees)

Rootchord,Co(m)

Secondleadingedgesweep,_2(degrees)

Tip chord,ct (m)

Breaklength,Xb(m)

Wingstartinglocation,Xw(m)

First pressurepeak

Secondpressurepeak

Drag-to-liftratio,Co/CL

Dragcoefficient

Lift coefficient

Dragforce(N)

Lift force(N)

0.57 0.513

6.01 6.61

70.16 74.25

8.12 8.60

54.93 52.51

1.62 1.39

12.28 12.76

8.13 7.75

0.03389 0.02590

0.05483 0.04394

0.11510 0.11099

0.02238 0.02133

0.19441 0.19221

18558.2 16852.5

159666.9 151843.3
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Figure 26. Comparison of objective functions; near field case with lift coefficient constraint.
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Figure 27b. Comparison of pressure signatures; near field case with lift coefficient constraint;

extrapolated to ground level (dl - 941.7 lb).
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The optimum designs from the aerodynamic/sonic boom optimization procedure for the two

configurations show a common trend. All these optimum designs are such that the nose region of

these configurations are more slender than their reference nose configurations. Correspondingly,

the first peaks in the pressure signatures of these optimum designs have decreased. This is

contrary to the trends observed by previous optimization studies [80-87] that the nose region

actually becomes more blunt for the sonic boom to decrease. The reasoning given in these studies

behind this trend is that, a blunt nosed configuration with special shaping gives rise to a strong

shock wave which avoids coalition with shocks from other aircraft components, thereby resulting

in a weak wave in the far field. However, the current MDO procedure that couples sonic boom

and aerodynamic criteria, does not compromise aerodynamic performance for sonic boom

improvement and yields slender bodies which have improved sonic boom as well as aerodynamic

characteristics.

5.4 Integrated Aerodynamic/Sonic Boom/Structural Optimization

The fourth MDO procedure developed in this research addresses the simultaneous

improvement in the aerodynamic, sonic boom and structural performance of high speed aircraft

configurations. The procedure uses two-levels of decomposition that are coupled with each other.

Since the sonic boom characteristics of an aircraft are strongly tied in with its aerodynamics, the

performance of the aircraft in these two disciplines is addressed in level 1 of the optimization

procedure. At level 2, the structural performance of the aircraft is optimized. The MDO problem is

formulated as follows.

5.4.1 Optimization Formulation

Level 1

The objectives at this level are reduced sonic boom pressure peaks and improved

aerodynamic performance. This can be stated as follows.

Minimize

Apl, Ap2 and CD/CL

subject to the constraints

CLmin < CL < CLmax

W < Wmax
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cI:_imin < _I:_l < cI)l max

cI:_2rnin < _2 < cI)2max

where Apl and Ap2 are the overpressure peaks in the sonic boom signature at a distance dl from

the aircraft. The quantity W is the aircraft weight. ¢I)1 is the first level design variable vector, CI:_2

is the second level design variable vector and the subscripts "min" and "max" denote lower and

upper bounds respectively. To incorporate the structural coupling in the first level, constraints are

imposed on the second level objective function, namely the aircraft weight (W) and the second

OW* . _)_)j2
anu--, are the optimal sensitivity parameters

level design variables (CI_2). The derivatives, c)(_il O(_il

of the second level objective function and design variables with respect to the first level design

variables. These derivatives establish the coupling between the two-levels of optimization.

Level 2

In the second level, structural optimization of the wing-body configuration is performed

during which, the first level design variables (_1) are held fixed at their optimum values obtained

from level 1 optimization. The optimization problem is defined as follows.

Minimize

W

subject to the following constraints

g(_) < 0

Mx r < Mxrmax

My r < Myrma x

cI_2min < cI_2 < ¢IZD2max

where _ is the stress vector, g(_) is a stress-based failure criterion to determine material failure,

Mx r and My r are the root bending moments along the x and the y directions [Fig. 28], respectively

and subscripts 'min' and 'max' denote lower and upper bounds, respectively. The upper bounds

on the root bending moments are imposed to reduce the loading that is eventually transmitted to the

aircraft. The wing structural parameters are used as design variables during the optimization. The
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multilevel optimization procedure iterates through the two-levels until global convergence is

achieved.

y

J
Z

X

My

T

Figure 28. Nodal force vectors due to aerodynamic loading at a given wing section.

5.4.2 Wing-Body Configuration

The two-level optimization is applied to the design optimization of the doubly swept wing-

body configuration (Fig. 15), described in Section 5.4.4. The reference values of the doube

sweep wing-body parameters are:c o = 8.12 m, c t = 1.62 m, _,l = 70.2 degrees, _ = 54.9 degrees,

rm = 0.57 m, In = 6.01 m, Xb = 12.28 m, Xw = 8.13 m, w s = 3.53 m, tc = 0.05 and lb = 17.52 m.

The wing half span (Ws), the wing thickness to chord ratio (tc) and the body length (lb) are held

constant during the optimization. The two leading edge sweeps (3,1 and _,2), the break length (Xb),

the wing root chord (Co), the wing tip chord (ct), the maximum nose radius (rm), the nose length

(In) and the wing starting location (Xw) are used as design variables during optimization at level 1.

5.4.3 Structural Model and Analysis

The principal load carrying member in the wing is modeled as a single-celled composite

box beam, as illustrated in Fig. 29. The structural design variable vector (_2) includes the box

beam width to chord ratio (Wc) and the ply angles (0%) of the laminates used to form the box beam

walls (Fig. 29). The box beam width to chord ratio (Wc) is a continuous design variable whereas

the ply angles are discrete variables, taking on discrete values from the set (0 °, +15 °, +30 °, +45 °,

+60 ° , +75 ° and +90°).

The analysis procedure for such composite beams is based on the formulation developed by

Smith and Chopra [125]. The analysis procedure allows the inclusion of pre-twist, taper and

spanwise sweep in the box beam. Using the analytical model, the deformation of the beam is
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describedthroughextension,bending,torsion,transverseshearingandtorsionrelatedwarping. In

the presentwork, this quasionedimensionalmodel is usedwithin a finite elementanalysisto
obtainnodaldeflectionsandstressesin theloadcarryingmember.Thebeamhasbeendividedinto

10elementsover thewing span.Thei thfinite elementisboundedby thenodesi (z = zi) andi+l

(z = zi+l). Eachfinite elementhas19degreesof freedom,Ue, which aredescribedasfollows

[Fig. 30].

UeT= [ Ul,U2,U3,U4,Vbl,Vb!,Vb2,Vb2,Wb1,wbI , Wb2,Wb2,_)1,_)2,(_3,

vsl,Vs2,Wsl,Ws2] (54)

width

cg=centroid
(xcg,ycg,zcg)

/////////

ffJfJfJJJ

,N\\\\\\\

012

01

0t

012

Figure 29. Composite box beam model.

In Eq. 54, u is the spanwise wing displacement, v and w are the inplane vertical and horizontal

wing displacements and _ is the elastic twist. First partial derivatives with respect to the spanwise

coordinate (z) are denoted ('). The inplane wing displacements are expressed as a sum of two

terms, one corresponding to pure bending and another corresponding to shear. In Eq. 54, the

subscript (b) refers to the displacements due to beam bending and the subscript (s) refers to the

displacements due to shear.
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Finite element degrees of freedom.

The elemental equations of equilibrium can then be expressed as follows.

Qy = k22 _=3/_t

Qx Lkl3 k23 k333[T°_J

{T}MyFko40k461r0',1= k55 k5611w"-_'!_

Mx Lk46 k56 k66j[v"-y°zrlJ

(55)

(56)

where F is the spanwise force, Qy and Qx denote the inplane forces in the vertical and the

horizontal directions, T is the torsional moment and My and Mx denote the bending moments in the

vertical and the horizontal directions [Fig. 28], respectively, kij represents the element stiffness
o o

matrix and 7zq and Yz_ are the inplane shear stresses in the vertical and the horizontal directions

of the composite box beam walls, respectively. Further details of the formulation can be found in

Ref. 125. The elemental equations are assembled into a global system of equations for the

unknown nodal wing displacements.

FG = KGUG (57)

where FG is the global force vector, KG is the global stiffness matrix and UG is the vector of nodal

wing displacements.
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5.4.4 Aerodynamic Load Calculations

The finite element method for the aircraft wing structural analysis requires the nodal load

vectors to be specified. Clearly, the loading on the wing structure comes from the aerodynamic

forces and moments that act on the surface of the wing. The pressure distribution on the wing,

which gives rise to these forces and moments, is obtained from the UPS3D flow solver. These

forces and moments are expressed as follows.

Q_= j_-p(x,y,z)ds x (58)
i+l

Si

Q_: _-p(x,y,z)dsy (59)
i+l

Si

F' = _-p(x,y,z)ds z (60)
i+l

Si

M_¢= jJ-p(x,y,z)(z-Zicg)dsy
i+l

S i

(61)

M_¢= jj-p(x,y,z)(z-Z_g)dsx
i+l

Si

(62)

Tl= j'J -p(x, y,z)[(x-X_g)dsy +(y-y_g)ds x ]
i+l

Si

(63)

In Eqs. 58-63, p(x,y,z) is the local pressure, dsx, dsy and dsz are the projections of an elemental

wing surface area element (dS) in the x, y and z directions, respectively and __!+1 denotes the area
i i

segment between the finite element nodes i (z = z i) and i+l (z = zi+l). The quantities Xcg, Ycg

i
and Zcg are the x, y and z coordinates of the centroid of the beam section at node i (z = z i) (Fig.

29). Since a symmetric composite box beam is used at every station throughout the span, the

centroid corresponds to the center of the box beam section (Fig. 29).

The Tsai-Wu failure criterion [ 126] has been used in the second level optimization to avoid

composite material failure. This criterion is expressed as follows.
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(64)

where a I and O 2 represent normal stresses along the material axes and 'I;12 represents the shear

stress. The subscripts T, C and S represent ultimate stress in tension, compression and shear,

respectively. The Tsai-Wu criterion reduces the total number of constraints as individual

constraints on the stresses (o 1, o 2 and _12) at each ply are eliminated. Each of the four composite

plates used in the box beam modeling is assumed to be symmetric about the midplane of the plate

and the beam itself is assumed to be symmetric about the beam centerline. The above failure

criterion is imposed, on each lamina, at each of the four comers of the box beam to prevent failure

due to stresses.

5.4.5 Weight Calculations

The aircraft weight (W) is calculated as the sum of the fuselage skin weight (Wfus), the

wing skin weight (Wwsk) and the wing spar weight (Wwsp). The skin is assumed to be made of

2014-T6 Aluminum alloy. The composite box beam is assumed to be made of Carbon-Epoxy

IM6/Epoxy. This material has a density of 1600 Kg/m 3 and its ultimate stresses are given by O1T

= 3500 MPa, O1C = 1540 MPa, O2T = 56 MPa, O2C = 150 MPa, '1712S = 98 MPa. The box beam

vertical wall thickness (tv) is 0.0366 m and the horizontal wall thickness (tw) is 0.0366 m. These

two parameters are held fixed during the optimization. The expressions for Wfus, Wwsk, Wwsp are

as follows.

W = Wfus + Wwsk + Wwsp

Wfus = rm(lb-ln)+ r(x)dx _tskPskg

Wws k = Ic(z)dz tskPskg

rm

(65)

(66)

(67)

W s

Wwsp = 9spg * [ - 4thtv(Ws-rm)+ 2[Wcth+tc(1- Wc)tv] _c(z)dz ]

r m

(68)
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wheretskis theskinthickness,Pskis thedensityof theskinmaterial,9spis thedensityof thewing

sparmaterial,c(z)is thelocalchordat anyspanwisewingsectionz andg is theaccelerationdueto

gravity.

5.4.6 Optimization Algorithms

In level 1, all the design variables are continuous and a nonlinear quasi Newton technique

which uses the BFGS algorithm [108] for finding the search direction is used. The structural

optimization problem at the second level involves a design variable vector that includes both

continuos design variables _c (e.g., spar width-to-chord ratio) and discrete design variables _cl

(e.g., ply angles). Continuos design variables are not compatible with combinatorial optimization

methods such as branch and bound techniques which require discrete values to operate. Similarly,

discrete variables are not compatible with gradient-based optimization methods unless a continuous

relaxation of the discrete variables is allowed which may lead to sub-optimal solutions. Thus,

optimization problems with both continuous and discrete design variables require the development

of a technique which efficiently incorporates both types of design variables. Chattopadhyay and

Seeley [127] have recently developed a hybrid optimization technique which can efficiently include

both continuous and discrete design variables. This procedure uses both a gradient-based search

and a modified simulated annealing algorithm to obtain a more global optimum. The technique is

briefly outlined below.

1. START

2. Current value of objective function is F

3. Select either continuous or discrete design variables to perturb for Fnew

4. If continuous variables are selected,

(I)cnew - (I) c + _S c

5. If discrete variable is selected

(I)dnew = (I)di

6. Compute Fnew

7. If Fnew < F then

F = Fnew

Else if Pacc> P then

F = Fnew

Endif

8. Check for convergence

9. If no convergence, go to START else STOP
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Here,thequantityF is thecurrentvalueof theK-S function, c_is arandomstepsizeselectedto be

within aprescribedpercentageof thecurrentvalueof thecontinuousvariablesandS is thesearch
directionvectorwhich is determinedfrom thegradientsof the K-S function with respectto the

continuousdesignvariables.Thesubscripti refersto the i th choice for a discrete design variable

out of a set of discrete values and the subscript 'new' stands for a new design point. The

continuous design variables are perturbed using o_ and S to improve the efficiency of the search

while the discrete variables are perturbed by randomly selecting values for CI_di within a given set.

Move limits and bounds are imposed on the continuous design variables to ensure a physically

meaningful design. The parameter P is a random number such that 0 < P < 1 and the acceptance

probability (Pacc) of retaining a worse design is computed as follows.

Pacc = exp(-AF/T) (69)

where AF represents the change in objective function and T is the "temperature" which is computed

at each iteration using the following relation.

T = Toq i (70)

where the temperature T is reduced from the initial temperature To during successive iterations i

using the cooling rate q (0 < q < 1). A high temperature allows the optimizer to occasionally accept

a design for which the objective function (Fnew) value is worse than the reference value. The

worse design is accepted based on the acceptance probability probability and allows the algorithm

to climb out of local minima. The acceptance probability is gradually reduced to zero during

optimization so that the optimizer converges smoothly to an improved design point.

The hybrid optimization procedure relies on a directed search for the continuous design

variables which increases efficiency. However, the probabilistic nature of the simulated annealing

algorithm allows the optimization procedure to climb out of local minima. Therefore, the

procedure exhibits the benefits of both gradient-based and discrete optimization techniques.

5.4.7 Results and Discussion

The optimization at level 1 has been carried out in two steps. In the first step, the body

radius and nose length are used as design variables to minimize the first peak in the sonic boom

pressure signature. In the second step, the wing geometric parameters are used as design variables

to minimize the second peak in the sonic boom pressure signature, while the nose dimensions are

maintained at their optimum values obtained from the first step. In both steps, optimization is

performed for minimum CD/CL and minimum sonic boom (Api and Ap2). The lift coefficient is
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constrainedusingCLmin = 0.95 CLre f and CLmax = 1.05 CLref where CLref is the lift coefficient of

the reference configuration. The inviscid flow field around the vehicle is evaluated using the CFD

solver (UPS3D) over a streamwise distance that extends from the tip of the body up to three times

the body length in the longitudinal direction. The aerodynamic sensitivity analysis at level 1 is

performed using the semi-analytical sensitivity analysis techniques [94-95]. The sensitivity

analysis at level 2 is performed using the finite difference method. A three-dimensional hyperbolic

grid with 75 grid points in the circumferential direction and 80 grid points in the normal direction

has been used. The cruise Mach number is 2.5, the angle of attack is 5 degrees and the flight

altitude is approximately 16,500 m. The aircraft weight (W) is constrained during the level 1

optimization to be below Wmax = Wref where Wref is the weight of the reference configuration.

The pressures at do = 0.5 lb are directly obtained from the CFD solver. The sonic boom signatures

at two locations have been considered during the optimization. The first of the two corresponds to

a distance dl= 3.61 lb from the axis of the body and is denoted "near field" in the text. The

second distance considered is dl = 941.7 lb from the axis of the body and is denoted "far field."

This far field distance corresponds to the ground level. Results from both cases of optimization are

discussed here.

Near Field Optimization (d! = 3.61 lb)

Figure 31 compares the reference and the optimum geometries. Figure 32 compares the

reference and the optimum values of the level 1 objective functions normalized with respect to their

corresponding reference values.

m

m

Reference

Near field optimum ," "

m

Figure 31.

I..

Comparison of planforms; near field optimization.

The first peak in the sonic boom signature (Apl) decreases by 23.6 percent in the optimum

configuration. This is due to the decrease in the maximum radius (rm) and the increase in the nose

length (In) during optimization. This slender nose has a smaller equivalent area distribution for the

nose region yielding a reduced first pressure peak. The smaller planform area of the optimum

configuration has a smaller equivalent area and lift distribution. The increase in leading edge

sweep (L1) of the optimum configuration also results in a weaker wing shock. These factors yield

a significant reduction (18.7 %) in the second pressure peak (Ap2) of the sonic boom signature.
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TheCD/CL ratio has also decreased by a modest 3.5 percent in the optimum configuration. This

percentage reduction is small because there are simultaneous reductions in both drag and lift in this

case. Figure 33 presents the sonic boom pressure signatures for the reference and the optimum

configurations. The constraint imposed on the aircraft weight (W) during the level 1 optimization

is satisfied throughout the optimization.

Table 11 presents the reference and the optimum values of the design variables and the

performance functions used in the level 1 optimization. Significant increases are observed in the

first leading edge sweep, the root chord and the break length of the optimum wing. These

increases coupled with the decreases in the wing tip chord and starting location result in a smaller

planform area for the optimum wing.

Table 11. Comparison of level 1 design variables and objective functions.

Design Variables Reference Near field Far field

optimum optimum

Maximum nose radius, rm (m)

Nose length, In (m)

1st leading edge sweep, XI (deg)

Root chord, Co (m)

2 nd leading edge sweep, X2 (deg)

Tip chord, ct (m)

Break length, Xb (m)

Wing starting location, Xw (m)

First pressure peak (Ap!)

Second pressure peak (Ap2)

Drag-to-lift ratio, CD/CL

0.570 0.513 0.513

6.010 6.610 6.610

70.20 74.40 70.32

8.120 8.610 8.060

54.93 52.45 59.75

1.620 1.355 1.240

12.28 12.44 11.27

8.130 7.670 7.150

0.03389 (Near) 0.02590 0.00120

0.00136 (Far) (-23.6 %) (-11.9 %)

0.05483 (Near) 0.04459 0.00258

0.00269 (Far) (-18.7 %) (-3.9 %)

0.11510 0.11112 0.10983

(-3.5 %) (-4.6 %)
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Figure 33. Comparison of pressure signatures; near field optimization.

Structural optimization is performed in level 2. As mentioned earlier, the walls of the

composite box beam have 24 plies which are symmetrically oriented about the midsection of the

wall. The corresponding 12 ply orientations and the beam width-to-chord ratio (wc) have been

used as design variables. Constraints on the stresses in the plies at all the spanwise finite element
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nodes are imposed through the Tsai-Wu criterion. The reference values are used as the upper

bounds for the wing root bending moment constraints, that is, Mxrmax = Mxrref and Myrma x =

Myrre f. The level 2 optimization is initiated with all the 12 ply angles set to the reference value of

90 degrees. Table 12 compares the reference and the optimum values of the design variables and

the aircraft weight obtained from the level 2 optimization. Considerable reduction (10 percent) in

the aircraft weight is observed from the reference to the optimum configuration.

Figure 34 compares the reference and the optimum values of the aircraft weight normalized

with respect to the reference weight and shows the corresponding reductions in the fuselage, wing

skin and wing spar weights. The aircraft weight reduction is due in part to the reductions in the

fuselage weight (11.2 percent) and the wing skin weight (2.1 percent), associated with the changes

in the level 1 design variables during the level 1 optimization. The reduction in the wing skin

weight is relatively small because the reduction in the wing planform area is relatively small.

Weight reduction is also obtained through a reduction in the wing spar weight (18.2 percent). The

optimum spar width-to-chord ratio (Wc) has reduced by 16.1 percent to effect this change. In the

reference configuration, the stress constraints are violated within several plies at various spanwise

locations. The optimization procedure is able to modify these stresses through significant changes

to the ply stacking sequence. The modified stress distribution in the optimum box beam

configuration satisfies the Tsai-Wu criteria at all the plies at all spanwise finite element nodes. The

optimum configuration also satisfies the root bending moment constraints well. Figure 35

compares the stresses and the root bending moments in the plies of the reference and the optimum

beam configurations for the root section. It is to be noted the stresses and the bending moments

have been normalized using their corresponding reference values. Significant reductions are

observed in both the root stresses and the root bending moments after the optimization.
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Table 12. Comparison of level 2 design variables and objective function(s).

I

Reference weight ] 1999.6 N

Near field optimum I 1799.8 N (-10 %)Far field optimum 1737.5 N (-13 %)

Design Wc 01 02 03 04 05 06 07 08 09 010 011 012

variable.

Reference 0.50 90 ° 90 ° 90 ° 90 ° 90 ° 90 ° 90 ° 90 ° 90 ° 90 ° 90 ° 90 °

Near field 0.42 75 ° 75 ° -75 ° 90 ° 75 ° 90 ° 90 ° 90 ° -75 ° -75 ° 75 °

60 °

Far field 0.43 75 ° 75 ° -75 ° 90 ° 90 ° 90 ° 90 ° 90 ° 90 ° -75 ° 75 °

75 °

1 m
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Figure 34. Comparison of level 2 objective function(s).
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Far Field Optimization (dl = 941.7 Ib)

The far field optimization formulation is identical to that the near field optimization except

that the sonic boom pressure peaks (Apl and Ap2) are evaluated at dl = 941.7 lb. Table 11

presents the reference and the optimum values of the design variables and the performance

functions used in the level 1 optimization. Figure 36 compares the reference and the optimum

geometries. Figure 32 compares the reference and the optimum values of the level 1 objective

functions normalized with respect to their corresponding reference values. The first peak in the

sonic boom signature (Apl) has decreased by 11.9 percent in the optimum configuration. Similar

to the near field optimization case, this is due to the decrease in the maximum radius (rm) and the

increase in the nose length (In) during optimization. In fact, it can be noticed that both the near

field and the far field optimizations yield the same optimum values for these two design variables.

However, the changes in the wing planform variables show different trends in the far field

optimization. Unlike the near field case, there is relatively small changes in the first leading edge

sweep (_,l) and the wing root chord (Co). The tip chord (ct) has decreased significantly (23.4

percent) and the second leading edge sweep (_2) has increased (8.1 percent). The wing starting

location (Xw) has moved forward by a significant 12.1 percent and the break length (Xb) has

decreased by 8.2 percent. These factors yield only a modest reduction (3.9 %) in the second

pressure peak (Ap2) of the sonic boom signature. These design trends indicate that the far field

sonic boom signature is relatively less sensitive to design variable changes than the near field

signature. This is due to the fact that the sonic boom extrapolation procedure [ 124] tries to fit an

approximate N-wave to the sonic boom signature at far field distances. The extrapolation

procedure coalesces all the detailed shock information into the N-wave in the far field and makes it

less sensitive to changes in the design variables. The CD/CL ratio has decreased by 4.6 percent in

the optimum configuration.
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Figure

Figure 37 presents the sonic boom pressure signatures for the reference and the optimum

configurations. Since the wing starting location and the break length have decreased for the

optimum configuration [Fig. 36], the relative separation between the first and the second sonic

boom overpressure peaks has also decreased for the optimum configuration. This can be clearly

seen in Fig.37 for the optimum pressure signature.
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Figure 36. Comparison of planforms; far field optimization.
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Figure 37. Comparison of pressure signatures; far field optimization.

The reference design for the level 2 (structural) optimization has the 12 ply angles set equal

to 90 degrees. Table 12 compares the reference and the optimum values of the design variables

and the aircraft weight obtained from the level 2 optimization. The optimization procedure reduces

the weight significantly (13 percent). Figure 34 compares the reference and the optimum values of

the aircraft weight normalized with respect to the reference weight and shows the significant

reduction in the total weight and its components. The fuselage weight, the wing skin weight and

the wing spar weight have decreased by 11.2 percent, 22.1 percent and 13.9 percent, respectively.

Unlike the near field case, the wing skin weight has reduced significantly in this case because the

planform area of the far field optimum configuration is considerably smaller than the planform area

of the reference configuration. The stress distribution in the optimum configuration satisfies the

Tsai-Wu criteria at all the plies and at all spanwise finite element nodes. The optimum

configuration also satisfies the root bending moment constraints. Figure 35 compares the stresses

and the root bending moments in the plies of the reference and the optimum beam configurations

for the root section. The optimization procedure successfully reduces the stresses and the root

bending moments in all the plies. However, the reduction in the root bending moments are mainly

due to the reductions in the aerodynamic loading corresponding to the decreases in the drag and the

lift forces of the wing-body. The values of the root bending moments are dictated by the

aerodynamic loading. If an "all-at-once" approach is used to perform the multidisciplinary

optimization instead of the present multilevel decomposition technique, these root bending moment

constraints would play an important role during optimization.
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FromTable 12,it canbeobservedthat in level2, thenearfield optimumandthe far field

optimumleadto similardesignvariablechanges.Oneof themainreasonsfor this trendis thatthe

aerodynamicloaddistributions,obtainedafterlevel 1optimization,aresimilarto eachotherin both
thenearfield andthefar field cases.Therefore,thechangesin the level2 designvariablesshow

similar trendsin bothcases.

6. Concluding Remarks

A semi-analytical sensitivity analysisprocedurehasbeen developedfor calculating

aerodynamic design sensitivities to be used in design optimization problems involving

comprehensiveCFDsolvers.Thegrid sensitivitiesandtheflow variablesensitivitiesarecalculated

by directlydifferentiatingthediscretizedgovemingdifferentialequations.Theprocedurehasbeen
developedfor thethree-dimensionalPNSsolver,UPS3D.Theaerodynamicdesignsensitivitiesof

wing-bodyconfigurationshavebeencalculatedusingthedevelopedprocedure.Thecomputational

grid usingwithin UPS3Dincludes75pointsin thecircurrnferentialdirectionand80pointsin the
normaldirection. Resultsobtainedfrom thesemi-analyticalsensitivitytechniquescomparevery
well with thoseobtainedusingafinite differenceapproach.Whenthesemi-analyticalsensitivity

analysistechniquesareusedinsteadof a finite differenceapproachwithin designoptimization

procedures,theseCPUsavingsbecomeverysignificant. For atypical sensitivityanalysisusing

four designvariables,the procedureyields a 39percentreductionin CPU time over the finite
differencetechnique.Within theintegratedaerodynamic/structuraloptimizationof thedeltawing-

body configurationwherethesefour designvariablesareused,the semi-analyticalsensitivity
analysistechniquesdecreasethe CPUtime by 780secondsperdesigncycleon theCRAY 2 or

nearly6.5CPUhoursfor theentireoptimization.Duringtheintegratedaerodynamic/sonicboom

optimizationof thedeltawing-bodyconfigurationwheresix designvariablesareused,thesemi-

analyticalsensitivityanalysistechniquesoffer asavingsof 2595secondsperdesigncycle (35 %)
and approximately 7 CPU hours for the entire optimization. During the integrated

aerodynamic/sonic boom optimization of the doubly swept wing-body configuration where eight

eight design variables are used, the semi-analytical sensitivity analysis techniques offer a savings

of 3460 seconds per design cycle (36.2 %). The time required for the entire optimization decreases

by I l CPU hours due to these CPU savings. Thus, there are two important observations to be

made of the semi-analytical sensitivity analysis technques.

.

.

Significant savings in CPU time are realized by using these techniques instead of the finite

difference approach, without any loss in accuracy.

The reduction in CPU time for each sensitivity analysis increases as the number of design

variables increases.
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Thesecondobservationis of importantconsequencein apracticaldesignenvironment,wherea

large of designparametersmay be usedto definethe aircraft. In sucha situation, the semi-

analytical sensitivity analysisprocedurewill be able to savea very significant amount of

computationaltime. Thesavingsassociatedwith thesemi-analyticalapproachalsoallows theuse
of comprehensiveanalysisprocedures(three-dimensionalNavier Stokessolvers)within design

optimization.
Several multidisciplinary design optimization procedureshave been developed for

aerospaceapplications. The MDO proceduresfor high speedconfigurationssimultaneously

improve the aerodynamic,sonic boom and structuralperformanceof the aircraft. The three-
dimensional,supersonicflow aroundtheaircraft iscalculatedusingthePNSsolver,UPS3D. The

wing loadcarryingmemberis modeledaseitheranisotropicboxbeamor a compositeboxbeam.
The isotropicbox beammodel is analyzedusingthin wall theoryandthecompositebox beam

modelis analyzedusingafiniteelementapproach.Theaerodynamicdesignsensitivitieshavebeen

calculatedusingthesemi-analyticalsensitivityanalysistechniques.A two-level decomposition

procedureis usedwhenstructuralcriteriaareincludedwithin theoptimizationformulation. The
following summarizestheresultsfromtheoptimizationprocedures.

.

,

.

.

.

The integrated aerodynamic/structural optimization procedure for high speed wing-body

configurations yields significant reductions in the aircraft drag and weight while improving

the lift.

The reduction in the aircraft drag is predominantly due to the significant reduction in the

wing thickness-to-chord ratio. The improvement in the lift is due to the increased planform

area caused by the increases in the wing root chord and wing span. Reduction in the

aircraft weight is achieved through reductions in the wall thicknesses of the wing spar.

The multiobjective optimization procedures, for integrated aerodynamic/sonic boom

optimization and the two-level optimization procedure, for integrated aerodynamic/sonic

boom/structural optimization, are efficient and yield overall improvements in all the

performance criteria included in the formulations.

Contrary to prior investigations, the multidisciplinary procedures yield low boom

configurations that are more slender and hence, aerodynamically efficient. Reductions in

the first peak of the sonic boom pressure signature are achieved through significant changes

to the nose dimensions of the aircraft. Reduction in the second pressure peak is achieved

through changes to the wing planform geometry and thickness-to-chord ratio.

The procedure demonstrates the trade-offs between low boom and aerodynamically

efficient configurations. The low boom designs have decreased lift associated with them.
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.

.

The percentage reductions in the sonic boom overpressure peaks are smaller for

optimizations based on the far field signature than those based on the near field signature.

The aircraft weight is affected both by the planform variables as well the beam width-to-

chord ratio. The stresses in the plies and the root bending moments are significantly

reduced during the optimization through a redistribution of the ply stacking sequence.

The MDO procedures, coupled with the sensitivity analysis techniques, have been found to

be efficient and reliable tools for the design of aerospace systems. The procedures are capable of

optimizing complete configurations as well as individual components. They bring out the trade-

offs between the individual disciplines. They also help identify design parameters that are

ineffective during the optimization and hence, can be eliminated from the design variable set. They

can be extremely useful tools to the designer by providing insight into the influence of each design

variable on the overall performance of the system. The semi-analytical sensitivity analysis

techniques offer significant computational savings and allow comprehensive analysis procedures

(e.g., Navier Stokes solvers) to be coupled within design optimization.
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